# Zephyr Query Engine Pack
Create a query engine using completely local and private models -- `HuggingFaceH4/zephyr-7b-beta` for the LLM and `BAAI/bge-base-en-v1.5` for embeddings.
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack ZephyrQueryEnginePack --download-dir ./zephyr_pack
```
You can then inspect the files at `./zephyr_pack` and use them as a template for your own project.
## Code Usage
You can download the pack to a the `./zephyr_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
ZephyrQueryEnginePack = download_llama_pack(
"ZephyrQueryEnginePack", "./zephyr_pack"
)
# You can use any llama-hub loader to get documents!
zephyr_pack = ZephyrQueryEnginePack(documents)
```
From here, you can use the pack, or inspect and modify the pack in `./zephyr_pack`.
The `run()` function is a light wrapper around `index.as_query_engine().query()`.
```python
response = zephyr_pack.run(
"What did the author do growing up?", similarity_top_k=2
)
```
You can also use modules individually.
```python
# Use the llm
llm = zephyr_pack.llm
response = llm.complete("What is HuggingFace?")
# Use the index directly
index = zephyr_pack.index
query_engine = index.as_query_engine()
retriever = index.as_retriever()
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-zephyr-query-engine",
"maintainer": "logan-markewich",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "engine, huggingface, index, local, query, zephyr",
"author": "Your Name",
"author_email": "you@example.com",
"download_url": "https://files.pythonhosted.org/packages/72/6e/53ad5d63ab8f54c6d8dce31bef1de19854efb1faaef24db736cbea5b53a3/llama_index_packs_zephyr_query_engine-0.4.0.tar.gz",
"platform": null,
"description": "# Zephyr Query Engine Pack\n\nCreate a query engine using completely local and private models -- `HuggingFaceH4/zephyr-7b-beta` for the LLM and `BAAI/bge-base-en-v1.5` for embeddings.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack ZephyrQueryEnginePack --download-dir ./zephyr_pack\n```\n\nYou can then inspect the files at `./zephyr_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./zephyr_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nZephyrQueryEnginePack = download_llama_pack(\n \"ZephyrQueryEnginePack\", \"./zephyr_pack\"\n)\n\n# You can use any llama-hub loader to get documents!\nzephyr_pack = ZephyrQueryEnginePack(documents)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./zephyr_pack`.\n\nThe `run()` function is a light wrapper around `index.as_query_engine().query()`.\n\n```python\nresponse = zephyr_pack.run(\n \"What did the author do growing up?\", similarity_top_k=2\n)\n```\n\nYou can also use modules individually.\n\n```python\n# Use the llm\nllm = zephyr_pack.llm\nresponse = llm.complete(\"What is HuggingFace?\")\n\n# Use the index directly\nindex = zephyr_pack.index\nquery_engine = index.as_query_engine()\nretriever = index.as_retriever()\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "llama-index packs zephyr_query_engine integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [
"engine",
" huggingface",
" index",
" local",
" query",
" zephyr"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0d625e468a401fe4eff80bf0bd4cd48a10c986b9174ab879c2e005d5da95786b",
"md5": "017ba138073fb577fa4a04bd6bf7097a",
"sha256": "ae57fcd835d6e537b1821d47a6278509087b05d2a68c18a393375c1277d41b4f"
},
"downloads": -1,
"filename": "llama_index_packs_zephyr_query_engine-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "017ba138073fb577fa4a04bd6bf7097a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 3489,
"upload_time": "2024-11-18T00:53:40",
"upload_time_iso_8601": "2024-11-18T00:53:40.282776Z",
"url": "https://files.pythonhosted.org/packages/0d/62/5e468a401fe4eff80bf0bd4cd48a10c986b9174ab879c2e005d5da95786b/llama_index_packs_zephyr_query_engine-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "726e53ad5d63ab8f54c6d8dce31bef1de19854efb1faaef24db736cbea5b53a3",
"md5": "79fce0ddb9b234f8d7ec51b483e5bab8",
"sha256": "6fe2debd3a667b43c7d747ecbe8526d74084e9036c0a899af28ba87008ff3364"
},
"downloads": -1,
"filename": "llama_index_packs_zephyr_query_engine-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "79fce0ddb9b234f8d7ec51b483e5bab8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 3135,
"upload_time": "2024-11-18T00:53:41",
"upload_time_iso_8601": "2024-11-18T00:53:41.870658Z",
"url": "https://files.pythonhosted.org/packages/72/6e/53ad5d63ab8f54c6d8dce31bef1de19854efb1faaef24db736cbea5b53a3/llama_index_packs_zephyr_query_engine-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 00:53:41",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-zephyr-query-engine"
}