Name | llama-index-readers-dashvector JSON |
Version |
0.5.1
JSON |
| download |
home_page | None |
Summary | llama-index readers dashvector integration |
upload_time | 2025-09-08 20:50:16 |
maintainer | None |
docs_url | None |
author | None |
requires_python | <4.0,>=3.9 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# LlamaIndex Readers Integration: Dashvector
## Overview
DashVector Reader is a tool designed to retrieve documents from DashVector clusters efficiently.
### Installation
You can install DashVector Reader via pip:
```bash
pip install llama-index-readers-dashvector
```
To use DashVector, you must have an API key. Here are the [installation instructions](https://help.aliyun.com/document_detail/2510223.html)
## Usage
```python
from llama_index.core.schema import Document
from llama_index.readers.dashvector import DashVectorReader
# Initialize DashVectorReader with the API key and cluster endpoint
reader = DashVectorReader(
api_key="<Your API Key>", endpoint="<Cluster Endpoint>"
)
# Load data from DashVector
documents = reader.load_data(
collection_name="<Collection Name>",
vector=[0.1, 0.2, 0.3], # Query vector
topk=10, # Number of results to return
separate_documents=True, # Whether to return separate documents
filter=None, # Optional: Filter conditions
include_vector=True, # Whether to include the embedding in the response
output_fields=None, # Optional: Fields Filter
)
```
This loader is designed to be used as a way to load data into
[LlamaIndex](https://github.com/run-llama/llama_index/tree/main/llama_index) and/or subsequently
used as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent.
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-readers-dashvector",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Your Name <you@example.com>",
"download_url": "https://files.pythonhosted.org/packages/be/67/471488562a7f7c66a5173fe9df049ffe4b420e7606f15020102085996009/llama_index_readers_dashvector-0.5.1.tar.gz",
"platform": null,
"description": "# LlamaIndex Readers Integration: Dashvector\n\n## Overview\n\nDashVector Reader is a tool designed to retrieve documents from DashVector clusters efficiently.\n\n### Installation\n\nYou can install DashVector Reader via pip:\n\n```bash\npip install llama-index-readers-dashvector\n```\n\nTo use DashVector, you must have an API key. Here are the [installation instructions](https://help.aliyun.com/document_detail/2510223.html)\n\n## Usage\n\n```python\nfrom llama_index.core.schema import Document\nfrom llama_index.readers.dashvector import DashVectorReader\n\n# Initialize DashVectorReader with the API key and cluster endpoint\nreader = DashVectorReader(\n api_key=\"<Your API Key>\", endpoint=\"<Cluster Endpoint>\"\n)\n\n# Load data from DashVector\ndocuments = reader.load_data(\n collection_name=\"<Collection Name>\",\n vector=[0.1, 0.2, 0.3], # Query vector\n topk=10, # Number of results to return\n separate_documents=True, # Whether to return separate documents\n filter=None, # Optional: Filter conditions\n include_vector=True, # Whether to include the embedding in the response\n output_fields=None, # Optional: Fields Filter\n)\n```\n\nThis loader is designed to be used as a way to load data into\n[LlamaIndex](https://github.com/run-llama/llama_index/tree/main/llama_index) and/or subsequently\nused as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent.\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index readers dashvector integration",
"version": "0.5.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c2cd2a275debcc335169b6084b4736720581e77d36d16675c22434c337b13b77",
"md5": "763c4382681bde2cf520e62011f5f925",
"sha256": "0d77959b67d7aa2e16e6f9acdc0e14cfc0b8a783e700ef1867b97d5bcd145814"
},
"downloads": -1,
"filename": "llama_index_readers_dashvector-0.5.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "763c4382681bde2cf520e62011f5f925",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4164,
"upload_time": "2025-09-08T20:50:15",
"upload_time_iso_8601": "2025-09-08T20:50:15.754766Z",
"url": "https://files.pythonhosted.org/packages/c2/cd/2a275debcc335169b6084b4736720581e77d36d16675c22434c337b13b77/llama_index_readers_dashvector-0.5.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "be67471488562a7f7c66a5173fe9df049ffe4b420e7606f15020102085996009",
"md5": "d4551af7dcfc679607283118a9896881",
"sha256": "9df404d011aa154c803dce45ef89b5588e9ca8ef9ea0200a61a6a3386f7e5bfc"
},
"downloads": -1,
"filename": "llama_index_readers_dashvector-0.5.1.tar.gz",
"has_sig": false,
"md5_digest": "d4551af7dcfc679607283118a9896881",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 4365,
"upload_time": "2025-09-08T20:50:16",
"upload_time_iso_8601": "2025-09-08T20:50:16.881897Z",
"url": "https://files.pythonhosted.org/packages/be/67/471488562a7f7c66a5173fe9df049ffe4b420e7606f15020102085996009/llama_index_readers_dashvector-0.5.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-08 20:50:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-readers-dashvector"
}