llama-index-readers-earnings-call-transcript


Namellama-index-readers-earnings-call-transcript JSON
Version 0.1.3 PyPI version JSON
download
home_page
Summaryllama-index readers earnings_call_transcript integration
upload_time2024-02-21 19:46:53
maintainerAthe-kunal
docs_urlNone
authorYour Name
requires_python>=3.8.1,<4.0
licenseMIT
keywords earning calls finance investor
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EARNING CALL TRANSCRIPTS LOADER

This loader fetches the earning call transcripts of US based companies from the website [discountingcashflows.com](https://discountingcashflows.com/). It is not available for commercial purposes

Install the required dependencies

```
pip install -r requirements.txt
```

The Earning call transcripts takes in three arguments

- Year
- Ticker symbol
- Quarter name from the list ["Q1","Q2","Q3","Q4"]

## Usage

```python
from llama_index import download_loader

IMDBReviewsloader = download_loader("EarningsCallTranscript")

loader = EarningsCallTranscript(2023, "AAPL", "Q3")
docs = loader.load_data()
```

The metadata of the transcripts are the following

- ticker
- quarter
- date_time
- speakers_list

## Examples

#### Llama Index

```python
from llama_index import download_loader
from llama_index import VectorStoreIndex, download_loader

EarningsCallTranscript = download_loader("EarningsCallTranscript")

loader = EarningsCallTranscript(2023, "AAPL", "Q3")
docs = loader.load_data()

index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

response = query_engine.query(
    "What was discussed about Generative AI?",
)
print(response)
```

#### Langchain

```python
from llama_index import download_loader
from langchain.agents import Tool
from langchain.agents import initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI

EarningsCallTranscript = download_loader("EarningsCallTranscript")

loader = EarningsCallTranscript(2023, "AAPL", "Q3")
docs = loader.load_data()

tools = [
    Tool(
        name="LlamaIndex",
        func=lambda q: str(index.as_query_engine().query(q)),
        description="useful for questions about investor transcripts calls for a company. The input to this tool should be a complete english sentence.",
        return_direct=True,
    ),
]
llm = ChatOpenAI(temperature=0)
agent = initialize_agent(tools, llm, agent="conversational-react-description")
agent.run("What was discussed about Generative AI?")
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "llama-index-readers-earnings-call-transcript",
    "maintainer": "Athe-kunal",
    "docs_url": null,
    "requires_python": ">=3.8.1,<4.0",
    "maintainer_email": "",
    "keywords": "Earning calls,Finance,Investor",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/f3/10/6f8702c35137a818ddf8310420ce8ad71f86d868d609cd8303df0f13629d/llama_index_readers_earnings_call_transcript-0.1.3.tar.gz",
    "platform": null,
    "description": "# EARNING CALL TRANSCRIPTS LOADER\n\nThis loader fetches the earning call transcripts of US based companies from the website [discountingcashflows.com](https://discountingcashflows.com/). It is not available for commercial purposes\n\nInstall the required dependencies\n\n```\npip install -r requirements.txt\n```\n\nThe Earning call transcripts takes in three arguments\n\n- Year\n- Ticker symbol\n- Quarter name from the list [\"Q1\",\"Q2\",\"Q3\",\"Q4\"]\n\n## Usage\n\n```python\nfrom llama_index import download_loader\n\nIMDBReviewsloader = download_loader(\"EarningsCallTranscript\")\n\nloader = EarningsCallTranscript(2023, \"AAPL\", \"Q3\")\ndocs = loader.load_data()\n```\n\nThe metadata of the transcripts are the following\n\n- ticker\n- quarter\n- date_time\n- speakers_list\n\n## Examples\n\n#### Llama Index\n\n```python\nfrom llama_index import download_loader\nfrom llama_index import VectorStoreIndex, download_loader\n\nEarningsCallTranscript = download_loader(\"EarningsCallTranscript\")\n\nloader = EarningsCallTranscript(2023, \"AAPL\", \"Q3\")\ndocs = loader.load_data()\n\nindex = VectorStoreIndex.from_documents(documents)\nquery_engine = index.as_query_engine()\n\nresponse = query_engine.query(\n    \"What was discussed about Generative AI?\",\n)\nprint(response)\n```\n\n#### Langchain\n\n```python\nfrom llama_index import download_loader\nfrom langchain.agents import Tool\nfrom langchain.agents import initialize_agent\nfrom langchain.chat_models import ChatOpenAI\nfrom langchain.llms import OpenAI\n\nEarningsCallTranscript = download_loader(\"EarningsCallTranscript\")\n\nloader = EarningsCallTranscript(2023, \"AAPL\", \"Q3\")\ndocs = loader.load_data()\n\ntools = [\n    Tool(\n        name=\"LlamaIndex\",\n        func=lambda q: str(index.as_query_engine().query(q)),\n        description=\"useful for questions about investor transcripts calls for a company. The input to this tool should be a complete english sentence.\",\n        return_direct=True,\n    ),\n]\nllm = ChatOpenAI(temperature=0)\nagent = initialize_agent(tools, llm, agent=\"conversational-react-description\")\nagent.run(\"What was discussed about Generative AI?\")\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index readers earnings_call_transcript integration",
    "version": "0.1.3",
    "project_urls": null,
    "split_keywords": [
        "earning calls",
        "finance",
        "investor"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4674b1964b8bd675674283cfb2368c14eca8241cd9a5208ed8e886e05890b646",
                "md5": "7d4216803a1d6a7404051fd7c6aae7ac",
                "sha256": "eddd6e84edeb38f6fe5009469d5769fcabaa99423a28c6f4d1cecb0d39a7937f"
            },
            "downloads": -1,
            "filename": "llama_index_readers_earnings_call_transcript-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7d4216803a1d6a7404051fd7c6aae7ac",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8.1,<4.0",
            "size": 4089,
            "upload_time": "2024-02-21T19:46:52",
            "upload_time_iso_8601": "2024-02-21T19:46:52.377772Z",
            "url": "https://files.pythonhosted.org/packages/46/74/b1964b8bd675674283cfb2368c14eca8241cd9a5208ed8e886e05890b646/llama_index_readers_earnings_call_transcript-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f3106f8702c35137a818ddf8310420ce8ad71f86d868d609cd8303df0f13629d",
                "md5": "319ee48b12e72888d492c884903c908e",
                "sha256": "69a3e79e31ee58740506b1717758f64f55283bb25484e466ee1a24e40ebbb951"
            },
            "downloads": -1,
            "filename": "llama_index_readers_earnings_call_transcript-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "319ee48b12e72888d492c884903c908e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.1,<4.0",
            "size": 3348,
            "upload_time": "2024-02-21T19:46:53",
            "upload_time_iso_8601": "2024-02-21T19:46:53.669354Z",
            "url": "https://files.pythonhosted.org/packages/f3/10/6f8702c35137a818ddf8310420ce8ad71f86d868d609cd8303df0f13629d/llama_index_readers_earnings_call_transcript-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-21 19:46:53",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-readers-earnings-call-transcript"
}
        
Elapsed time: 0.44840s