# LlamaIndex Readers Integration: Metal
## Overview
Metal Reader is designed to load data from the Metal Vector store, which provides search functionality based on query embeddings and filters. It retrieves documents from the Metal index associated with the provided API key, client ID, and index ID.
### Installation
You can install Metal Reader via pip:
```bash
pip install llama-index-readers-metal
```
To use Metal Reader, you must have a vector store first. Follow this to create a metal vector store, [Setup Metal Vector Store](https://docs.llamaindex.ai/en/stable/examples/vector_stores/MetalIndexDemo/)
### Usage
```python
from llama_index.readers.metal import MetalReader
# Initialize MetalReader
reader = MetalReader(
api_key="<Metal API Key>",
client_id="<Metal Client ID>",
index_id="<Metal Index ID>",
)
# Load data from Metal
documents = reader.load_data(
limit=10, # Number of results to return
query_embedding=[0.1, 0.2, 0.3], # Query embedding for search
filters={"field": "value"}, # Filters to apply to the search
separate_documents=True, # Whether to return separate documents
)
```
This loader is designed to be used as a way to load data into
[LlamaIndex](https://github.com/run-llama/llama_index/tree/main/llama_index) and/or subsequently
used as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent.
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-readers-metal",
"maintainer": "getmetal",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "metal, retriever, storage",
"author": "Your Name",
"author_email": "you@example.com",
"download_url": "https://files.pythonhosted.org/packages/d0/a4/dd26328e24ee781b36212c9d23e9a740809e70d7803d35b7dc2d12656515/llama_index_readers_metal-0.3.0.tar.gz",
"platform": null,
"description": "# LlamaIndex Readers Integration: Metal\n\n## Overview\n\nMetal Reader is designed to load data from the Metal Vector store, which provides search functionality based on query embeddings and filters. It retrieves documents from the Metal index associated with the provided API key, client ID, and index ID.\n\n### Installation\n\nYou can install Metal Reader via pip:\n\n```bash\npip install llama-index-readers-metal\n```\n\nTo use Metal Reader, you must have a vector store first. Follow this to create a metal vector store, [Setup Metal Vector Store](https://docs.llamaindex.ai/en/stable/examples/vector_stores/MetalIndexDemo/)\n\n### Usage\n\n```python\nfrom llama_index.readers.metal import MetalReader\n\n# Initialize MetalReader\nreader = MetalReader(\n api_key=\"<Metal API Key>\",\n client_id=\"<Metal Client ID>\",\n index_id=\"<Metal Index ID>\",\n)\n\n# Load data from Metal\ndocuments = reader.load_data(\n limit=10, # Number of results to return\n query_embedding=[0.1, 0.2, 0.3], # Query embedding for search\n filters={\"field\": \"value\"}, # Filters to apply to the search\n separate_documents=True, # Whether to return separate documents\n)\n```\n\nThis loader is designed to be used as a way to load data into\n[LlamaIndex](https://github.com/run-llama/llama_index/tree/main/llama_index) and/or subsequently\nused as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "llama-index readers metal integration",
"version": "0.3.0",
"project_urls": null,
"split_keywords": [
"metal",
" retriever",
" storage"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "75878f6f16f8b794ce7028374913a661d6ed57e6349ea112c697c82391166254",
"md5": "a9071f2c5003a3203912eec140792a4c",
"sha256": "671e7fa8876815305ff3361dad22389ba5c25755b39a83059da2c603f33dfddb"
},
"downloads": -1,
"filename": "llama_index_readers_metal-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a9071f2c5003a3203912eec140792a4c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 3092,
"upload_time": "2024-11-18T00:20:31",
"upload_time_iso_8601": "2024-11-18T00:20:31.031079Z",
"url": "https://files.pythonhosted.org/packages/75/87/8f6f16f8b794ce7028374913a661d6ed57e6349ea112c697c82391166254/llama_index_readers_metal-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d0a4dd26328e24ee781b36212c9d23e9a740809e70d7803d35b7dc2d12656515",
"md5": "960ee2d3f9d95dbe2f7b89809ec2f3ec",
"sha256": "8939a57315afeca0c77cb35149372ff35e12359abd5ccff4f385c9379152ff98"
},
"downloads": -1,
"filename": "llama_index_readers_metal-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "960ee2d3f9d95dbe2f7b89809ec2f3ec",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 2836,
"upload_time": "2024-11-18T00:20:32",
"upload_time_iso_8601": "2024-11-18T00:20:32.646350Z",
"url": "https://files.pythonhosted.org/packages/d0/a4/dd26328e24ee781b36212c9d23e9a740809e70d7803d35b7dc2d12656515/llama_index_readers_metal-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 00:20:32",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-readers-metal"
}