| Name | llama-index-readers-qdrant JSON |
| Version |
0.4.0
JSON |
| download |
| home_page | None |
| Summary | llama-index readers qdrant integration |
| upload_time | 2025-07-30 20:52:53 |
| maintainer | kacperlukawski |
| docs_url | None |
| author | None |
| requires_python | <4.0,>=3.9 |
| license | None |
| keywords |
|
| VCS |
|
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# LlamaIndex Readers Integration: Qdrant
## Overview
The Qdrant Reader allows you to retrieve documents from existing Qdrant collections. Qdrant is a similarity search engine that helps you efficiently search and retrieve similar items from large datasets based on vector embeddings.
For more detailed information about Qdrant, visit [Qdrant](qdrant.io)
### Installation
You can install the Qdrant Reader via pip:
```bash
pip install llama-index-readers-qdrant
```
### Usage
```python
from llama_index.readers.qdrant import QdrantReader
# Initialize QdrantReader
reader = QdrantReader(
location="<Qdrant Location>",
url="<Qdrant URL>",
port="<Port>",
grpc_port="<gRPC Port>",
prefer_grpc="<Prefer gRPC>",
https="<Use HTTPS>",
api_key="<API Key>",
prefix="<URL Prefix>",
timeout="<Timeout>",
host="<Host>",
)
# Load data from Qdrant
documents = reader.load_data(
collection_name="<Collection Name>",
query_vector=[0.1, 0.2, 0.3],
should_search_mapping={"text_field": "text"},
must_search_mapping={"text_field": "text"},
must_not_search_mapping={"text_field": "text"},
rang_search_mapping={"text_field": {"gte": 0.1, "lte": 0.2}},
limit=10,
)
```
This loader is designed to be used as a way to load data into
[LlamaIndex](https://github.com/run-llama/llama_index/tree/main/llama_index) and/or subsequently
used as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent.
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-readers-qdrant",
"maintainer": "kacperlukawski",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Your Name <you@example.com>",
"download_url": "https://files.pythonhosted.org/packages/09/4a/cec02b45c592505741061ffaba12bb0b6a7628347b737d3cf890eda7cafe/llama_index_readers_qdrant-0.4.0.tar.gz",
"platform": null,
"description": "# LlamaIndex Readers Integration: Qdrant\n\n## Overview\n\nThe Qdrant Reader allows you to retrieve documents from existing Qdrant collections. Qdrant is a similarity search engine that helps you efficiently search and retrieve similar items from large datasets based on vector embeddings.\n\nFor more detailed information about Qdrant, visit [Qdrant](qdrant.io)\n\n### Installation\n\nYou can install the Qdrant Reader via pip:\n\n```bash\npip install llama-index-readers-qdrant\n```\n\n### Usage\n\n```python\nfrom llama_index.readers.qdrant import QdrantReader\n\n# Initialize QdrantReader\nreader = QdrantReader(\n location=\"<Qdrant Location>\",\n url=\"<Qdrant URL>\",\n port=\"<Port>\",\n grpc_port=\"<gRPC Port>\",\n prefer_grpc=\"<Prefer gRPC>\",\n https=\"<Use HTTPS>\",\n api_key=\"<API Key>\",\n prefix=\"<URL Prefix>\",\n timeout=\"<Timeout>\",\n host=\"<Host>\",\n)\n\n# Load data from Qdrant\ndocuments = reader.load_data(\n collection_name=\"<Collection Name>\",\n query_vector=[0.1, 0.2, 0.3],\n should_search_mapping={\"text_field\": \"text\"},\n must_search_mapping={\"text_field\": \"text\"},\n must_not_search_mapping={\"text_field\": \"text\"},\n rang_search_mapping={\"text_field\": {\"gte\": 0.1, \"lte\": 0.2}},\n limit=10,\n)\n```\n\nThis loader is designed to be used as a way to load data into\n[LlamaIndex](https://github.com/run-llama/llama_index/tree/main/llama_index) and/or subsequently\nused as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent.\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index readers qdrant integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "510b04803b83353a73dd39cb59e0a69da0c94221d30e0383e85318922490e06a",
"md5": "7aa3d46a77d921510c631616bc7343f0",
"sha256": "a0d05d42f22ab06d2c1541f96146d4ad65a4f95fbbd3ae4ea85d55158ab6bec7"
},
"downloads": -1,
"filename": "llama_index_readers_qdrant-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7aa3d46a77d921510c631616bc7343f0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4931,
"upload_time": "2025-07-30T20:52:52",
"upload_time_iso_8601": "2025-07-30T20:52:52.917220Z",
"url": "https://files.pythonhosted.org/packages/51/0b/04803b83353a73dd39cb59e0a69da0c94221d30e0383e85318922490e06a/llama_index_readers_qdrant-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "094acec02b45c592505741061ffaba12bb0b6a7628347b737d3cf890eda7cafe",
"md5": "5e335719fc92f9d34bccee7d23fc0ce3",
"sha256": "076177f21923414b5cb38ffdf9105dd4e9156c5acd83878d1e94c340f9ba421b"
},
"downloads": -1,
"filename": "llama_index_readers_qdrant-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "5e335719fc92f9d34bccee7d23fc0ce3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 5276,
"upload_time": "2025-07-30T20:52:53",
"upload_time_iso_8601": "2025-07-30T20:52:53.935697Z",
"url": "https://files.pythonhosted.org/packages/09/4a/cec02b45c592505741061ffaba12bb0b6a7628347b737d3cf890eda7cafe/llama_index_readers_qdrant-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 20:52:53",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-readers-qdrant"
}