llama-index-readers-singlestore


Namellama-index-readers-singlestore JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
Summaryllama-index readers singlestore integration
upload_time2024-11-18 01:00:55
maintainersinglestore
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords memsql singlestore
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SingleStore Loader

```bash
pip install llama-index-readers-singlestore
```

The SingleStore Loader retrieves a set of documents from a specified table in a SingleStore database. The user initializes the loader with database information and then provides a search embedding for retrieving similar documents.

## Usage

Here's an example usage of the SingleStoreReader:

```python
from llama_index.readers.singlestore import SingleStoreReader

# Initialize the reader with your SingleStore database credentials and other relevant details
reader = SingleStoreReader(
    scheme="mysql",
    host="localhost",
    port="3306",
    user="username",
    password="password",
    dbname="database_name",
    table_name="table_name",
    content_field="text",
    vector_field="embedding",
)

# The search_embedding is an embedding representation of your query_vector.
# Example search_embedding:
#   search_embedding=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
search_embedding = [n1, n2, n3, ...]

# load_data fetches documents from your SingleStore database that are similar to the search_embedding.
# The top_k argument specifies the number of similar documents to fetch.
documents = reader.load_data(search_embedding=search_embedding, top_k=5)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-readers-singlestore",
    "maintainer": "singlestore",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "memsql, singlestore",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/33/b0/6be035dcc2c3fe0b3e61907098f1ec79aa98871f48dbb9191dd42c79a49c/llama_index_readers_singlestore-0.3.0.tar.gz",
    "platform": null,
    "description": "# SingleStore Loader\n\n```bash\npip install llama-index-readers-singlestore\n```\n\nThe SingleStore Loader retrieves a set of documents from a specified table in a SingleStore database. The user initializes the loader with database information and then provides a search embedding for retrieving similar documents.\n\n## Usage\n\nHere's an example usage of the SingleStoreReader:\n\n```python\nfrom llama_index.readers.singlestore import SingleStoreReader\n\n# Initialize the reader with your SingleStore database credentials and other relevant details\nreader = SingleStoreReader(\n    scheme=\"mysql\",\n    host=\"localhost\",\n    port=\"3306\",\n    user=\"username\",\n    password=\"password\",\n    dbname=\"database_name\",\n    table_name=\"table_name\",\n    content_field=\"text\",\n    vector_field=\"embedding\",\n)\n\n# The search_embedding is an embedding representation of your query_vector.\n# Example search_embedding:\n#   search_embedding=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]\nsearch_embedding = [n1, n2, n3, ...]\n\n# load_data fetches documents from your SingleStore database that are similar to the search_embedding.\n# The top_k argument specifies the number of similar documents to fetch.\ndocuments = reader.load_data(search_embedding=search_embedding, top_k=5)\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index readers singlestore integration",
    "version": "0.3.0",
    "project_urls": null,
    "split_keywords": [
        "memsql",
        " singlestore"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8b543f39bc1ff1c9b8c94d9fbc058ff961daf2f970d84b1a5030a85aff080074",
                "md5": "97f29658a6cf4db36e6304a37033ec9e",
                "sha256": "04020770e7fd2377ef295cf992c28f67c839000635af8374be033bbb205b0765"
            },
            "downloads": -1,
            "filename": "llama_index_readers_singlestore-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "97f29658a6cf4db36e6304a37033ec9e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 2934,
            "upload_time": "2024-11-18T01:00:54",
            "upload_time_iso_8601": "2024-11-18T01:00:54.204011Z",
            "url": "https://files.pythonhosted.org/packages/8b/54/3f39bc1ff1c9b8c94d9fbc058ff961daf2f970d84b1a5030a85aff080074/llama_index_readers_singlestore-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "33b06be035dcc2c3fe0b3e61907098f1ec79aa98871f48dbb9191dd42c79a49c",
                "md5": "f7fc4740d8a874fc3822c7fb281c7d43",
                "sha256": "68df0a25b04917ea930716dd0b1ff7e76bc566b1f7c12a501b8260714e7f2140"
            },
            "downloads": -1,
            "filename": "llama_index_readers_singlestore-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f7fc4740d8a874fc3822c7fb281c7d43",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 2654,
            "upload_time": "2024-11-18T01:00:55",
            "upload_time_iso_8601": "2024-11-18T01:00:55.038045Z",
            "url": "https://files.pythonhosted.org/packages/33/b0/6be035dcc2c3fe0b3e61907098f1ec79aa98871f48dbb9191dd42c79a49c/llama_index_readers_singlestore-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 01:00:55",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-readers-singlestore"
}
        
Elapsed time: 2.13038s