Name | llama-index-tools-exa JSON |
Version |
0.4.0
JSON |
| download |
home_page | None |
Summary | llama-index tools exa integration |
upload_time | 2025-07-30 20:54:43 |
maintainer | jeffzwang |
docs_url | None |
author | None |
requires_python | <4.0,>=3.9 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# LlamaIndex Tools Integration: Exa
This tool connects to [Exa](https://exa.ai/) to easily enable
your agent to search and get HTML content from the Internet.
To begin, you need to obtain an API key on the [Exa developer dashboard](https://dashboard.exa.ai).
## Usage
This tool has more a extensive example usage documented in a Jupyter notebook [here](https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/tools/llama-index-tools-exa/examples/exa.ipynb)
Here's an example usage of the ExaToolSpec.
```python
# %pip install llama-index llama-index-core llama-index-tools-exa
from llama_index.tools.exa import ExaToolSpec
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.llms.openai import OpenAI
exa_tool = ExaToolSpec(
api_key=os.environ["EXA_API_KEY"],
)
agent = FunctionAgent(
tools=exa_tool.to_tool_list(),
llm=OpenAI(model="gpt-4.1"),
)
print(
await agent.run(
"Can you summarize the news published in the last month on superconductors"
)
)
```
`search`: Search for a list of articles relating to a natural language query
`retrieve_documents`: Retrieve a list of documents returned from `exa_search`.
`search_and_retrieve_documents`: Combines search and retrieve_documents to directly return a list of documents related to a search
`find_similar`: Find similar documents to a given URL.
`current_date`: Utility for the Agent to get todays date
This loader is designed to be used as a way to load data as a Tool in a Agent.
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-tools-exa",
"maintainer": "jeffzwang",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Your Name <you@example.com>",
"download_url": "https://files.pythonhosted.org/packages/93/61/1281b80a65328053fc1de58ed39512f8ffa853557c476ff2bd36d57c6f8a/llama_index_tools_exa-0.4.0.tar.gz",
"platform": null,
"description": "# LlamaIndex Tools Integration: Exa\n\nThis tool connects to [Exa](https://exa.ai/) to easily enable\nyour agent to search and get HTML content from the Internet.\n\nTo begin, you need to obtain an API key on the [Exa developer dashboard](https://dashboard.exa.ai).\n\n## Usage\n\nThis tool has more a extensive example usage documented in a Jupyter notebook [here](https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/tools/llama-index-tools-exa/examples/exa.ipynb)\n\nHere's an example usage of the ExaToolSpec.\n\n```python\n# %pip install llama-index llama-index-core llama-index-tools-exa\n\nfrom llama_index.tools.exa import ExaToolSpec\nfrom llama_index.core.agent.workflow import FunctionAgent\nfrom llama_index.llms.openai import OpenAI\n\nexa_tool = ExaToolSpec(\n api_key=os.environ[\"EXA_API_KEY\"],\n)\nagent = FunctionAgent(\n tools=exa_tool.to_tool_list(),\n llm=OpenAI(model=\"gpt-4.1\"),\n)\n\nprint(\n await agent.run(\n \"Can you summarize the news published in the last month on superconductors\"\n )\n)\n```\n\n`search`: Search for a list of articles relating to a natural language query\n\n`retrieve_documents`: Retrieve a list of documents returned from `exa_search`.\n\n`search_and_retrieve_documents`: Combines search and retrieve_documents to directly return a list of documents related to a search\n\n`find_similar`: Find similar documents to a given URL.\n\n`current_date`: Utility for the Agent to get todays date\n\nThis loader is designed to be used as a way to load data as a Tool in a Agent.\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index tools exa integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "56d381672117f087a9632282031c1bdcdd886836e2c866163714bdb1e17b6487",
"md5": "a0d52ee8ee8d84bf99740a2c6ab575d2",
"sha256": "1e001b32db852bfceda8f19a3bdc16acb75892e156e85184ac7e16dda9b75aca"
},
"downloads": -1,
"filename": "llama_index_tools_exa-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a0d52ee8ee8d84bf99740a2c6ab575d2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4470,
"upload_time": "2025-07-30T20:54:42",
"upload_time_iso_8601": "2025-07-30T20:54:42.675714Z",
"url": "https://files.pythonhosted.org/packages/56/d3/81672117f087a9632282031c1bdcdd886836e2c866163714bdb1e17b6487/llama_index_tools_exa-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "93611281b80a65328053fc1de58ed39512f8ffa853557c476ff2bd36d57c6f8a",
"md5": "66c4d437632755492f00558cb78cf9f7",
"sha256": "eefeaa6d080623aba976258da1394693a263d909c0c2c40a03ba9086664d700b"
},
"downloads": -1,
"filename": "llama_index_tools_exa-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "66c4d437632755492f00558cb78cf9f7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 4913,
"upload_time": "2025-07-30T20:54:43",
"upload_time_iso_8601": "2025-07-30T20:54:43.349625Z",
"url": "https://files.pythonhosted.org/packages/93/61/1281b80a65328053fc1de58ed39512f8ffa853557c476ff2bd36d57c6f8a/llama_index_tools_exa-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 20:54:43",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-tools-exa"
}