Name | llama-index-tools-scrapegraphai JSON |
Version |
0.2.1
JSON |
| download |
home_page | None |
Summary | llama-index tools integrating ScrapegraphAI |
upload_time | 2025-09-08 20:47:59 |
maintainer | Vincigit00 |
docs_url | None |
author | None |
requires_python | <4.0,>=3.10 |
license | None |
keywords |
scraping
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# LlamaIndex Tool - Scrapegraph
This tool integrates [Scrapegraph](https://scrapegraphai.com) with LlamaIndex, providing intelligent web scraping capabilities with structured data extraction.
## Installation
```bash
pip install llama-index-tools-scrapegraph
```
## Usage
First, import and initialize the ScrapegraphToolSpec:
```python
from llama_index.tools.scrapegraph import ScrapegraphToolSpec
scrapegraph_tool = ScrapegraphToolSpec()
```
### Available Functions
The tool provides the following capabilities:
1. **Smart Scraper**
```python
from pydantic import BaseModel
# Define your schema (optional)
class ProductSchema(BaseModel):
name: str
price: float
description: str
schema = [ProductSchema]
# Perform the scraping
result = scrapegraph_tool.scrapegraph_smartscraper(
prompt="Extract product information",
url="https://example.com/product",
api_key="your-api-key",
schema=schema, # Optional
)
```
2. **Markdownify**
Convert webpage content to markdown format:
```python
markdown_content = scrapegraph_tool.scrapegraph_markdownify(
url="https://example.com", api_key="your-api-key"
)
```
3. **Local Scrape**
Extract structured data from raw text:
```python
text = """
Your raw text content here...
"""
structured_data = scrapegraph_tool.scrapegraph_local_scrape(
text=text, api_key="your-api-key"
)
```
## Requirements
- Python 3.8+
- `scrapegraph-py` package
- Valid Scrapegraph API key
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-tools-scrapegraphai",
"maintainer": "Vincigit00",
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "scraping",
"author": null,
"author_email": "Marco Vinciguerra <mvincig11@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/28/e4/0f4838086008d9e050a28b50b01160f89f979c7643f89594f3bc249f5929/llama_index_tools_scrapegraphai-0.2.1.tar.gz",
"platform": null,
"description": "# LlamaIndex Tool - Scrapegraph\n\nThis tool integrates [Scrapegraph](https://scrapegraphai.com) with LlamaIndex, providing intelligent web scraping capabilities with structured data extraction.\n\n## Installation\n\n```bash\npip install llama-index-tools-scrapegraph\n```\n\n## Usage\n\nFirst, import and initialize the ScrapegraphToolSpec:\n\n```python\nfrom llama_index.tools.scrapegraph import ScrapegraphToolSpec\n\nscrapegraph_tool = ScrapegraphToolSpec()\n```\n\n### Available Functions\n\nThe tool provides the following capabilities:\n\n1. **Smart Scraper**\n\n```python\nfrom pydantic import BaseModel\n\n\n# Define your schema (optional)\nclass ProductSchema(BaseModel):\n name: str\n price: float\n description: str\n\n\nschema = [ProductSchema]\n\n# Perform the scraping\nresult = scrapegraph_tool.scrapegraph_smartscraper(\n prompt=\"Extract product information\",\n url=\"https://example.com/product\",\n api_key=\"your-api-key\",\n schema=schema, # Optional\n)\n```\n\n2. **Markdownify**\n\nConvert webpage content to markdown format:\n\n```python\nmarkdown_content = scrapegraph_tool.scrapegraph_markdownify(\n url=\"https://example.com\", api_key=\"your-api-key\"\n)\n```\n\n3. **Local Scrape**\n\nExtract structured data from raw text:\n\n```python\ntext = \"\"\"\nYour raw text content here...\n\"\"\"\n\nstructured_data = scrapegraph_tool.scrapegraph_local_scrape(\n text=text, api_key=\"your-api-key\"\n)\n```\n\n## Requirements\n\n- Python 3.8+\n- `scrapegraph-py` package\n- Valid Scrapegraph API key\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index tools integrating ScrapegraphAI",
"version": "0.2.1",
"project_urls": null,
"split_keywords": [
"scraping"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "85f3e87370b59369aa48cb79b3d857b14813d10ca0d5f852ec545875bc4d9e01",
"md5": "4c18ad948adfb1891efda89079fefe33",
"sha256": "e8cf5e012ce1fa92216df6e8ee564417903bc481a6740fdc9f2f29ebfbd49a4c"
},
"downloads": -1,
"filename": "llama_index_tools_scrapegraphai-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4c18ad948adfb1891efda89079fefe33",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 3751,
"upload_time": "2025-09-08T20:47:58",
"upload_time_iso_8601": "2025-09-08T20:47:58.887626Z",
"url": "https://files.pythonhosted.org/packages/85/f3/e87370b59369aa48cb79b3d857b14813d10ca0d5f852ec545875bc4d9e01/llama_index_tools_scrapegraphai-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "28e40f4838086008d9e050a28b50b01160f89f979c7643f89594f3bc249f5929",
"md5": "d275386b08bc46cd73a14257148bc15e",
"sha256": "e82eb9d5fa84ff87b3b8bb9ed1e779edf93374384dc8ac1f5626286f8756e2b3"
},
"downloads": -1,
"filename": "llama_index_tools_scrapegraphai-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "d275386b08bc46cd73a14257148bc15e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4079,
"upload_time": "2025-09-08T20:47:59",
"upload_time_iso_8601": "2025-09-08T20:47:59.556954Z",
"url": "https://files.pythonhosted.org/packages/28/e4/0f4838086008d9e050a28b50b01160f89f979c7643f89594f3bc249f5929/llama_index_tools_scrapegraphai-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-08 20:47:59",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-tools-scrapegraphai"
}