Name | llama-index-tools-vectara-query JSON |
Version |
0.4.1
JSON |
| download |
home_page | None |
Summary | llama-index tools vectara query integration |
upload_time | 2025-09-08 20:49:24 |
maintainer | None |
docs_url | None |
author | None |
requires_python | <4.0,>=3.9 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## Vectara Query Tool
This tool connects to a Vectara corpus and allows agents to make semantic search or retrieval augmented generation (RAG) queries.
## Usage
Please note that this usage example relies on version >=0.3.0.
This tool has a more extensive example usage documented in a Jupyter notebok [here](https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/tools/llama-index-tools-vectara-query/examples/vectara_query.ipynb)
To use this tool, you'll need a Vectara account (If you don't have an account, you can create one [here](https://vectara.com/integrations/llamaindex)) and the following information in your environment:
- `VECTARA_CORPUS_KEY`: The corpus key for the Vectara corpus that you want your tool to search for information. If you need help creating a corpus with your data, follow this [Quick Start](https://docs.vectara.com/docs/quickstart) guide.
- `VECTARA_API_KEY`: An API key that can perform queries on this corpus.
Here's an example usage of the VectaraQueryToolSpec.
```python
from llama_index.tools.vectara_query import VectaraQueryToolSpec
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.llms.openai import OpenAI
# Connecting to a Vectara corpus about Electric Vehicles
tool_spec = VectaraQueryToolSpec()
agent = FunctionAgent(
tools=tool_spec.to_tool_list(),
llm=OpenAI(model="gpt-4.1"),
)
print(await agent.run("What are the different types of electric vehicles?"))
```
The available tools are:
`semantic_search`: A tool that accepts a query and uses semantic search to obtain the top search results.
`rag_query`: A tool that accepts a query and uses RAG to obtain a generative response grounded in the search results.
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-tools-vectara-query",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "David Oplatka <david.oplatka@vectara.com>",
"download_url": "https://files.pythonhosted.org/packages/7a/f4/94281a5f46c486cfa8372187c17b613a9427680933463d3ad1c324378ac7/llama_index_tools_vectara_query-0.4.1.tar.gz",
"platform": null,
"description": "## Vectara Query Tool\n\nThis tool connects to a Vectara corpus and allows agents to make semantic search or retrieval augmented generation (RAG) queries.\n\n## Usage\n\nPlease note that this usage example relies on version >=0.3.0.\n\nThis tool has a more extensive example usage documented in a Jupyter notebok [here](https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/tools/llama-index-tools-vectara-query/examples/vectara_query.ipynb)\n\nTo use this tool, you'll need a Vectara account (If you don't have an account, you can create one [here](https://vectara.com/integrations/llamaindex)) and the following information in your environment:\n\n- `VECTARA_CORPUS_KEY`: The corpus key for the Vectara corpus that you want your tool to search for information. If you need help creating a corpus with your data, follow this [Quick Start](https://docs.vectara.com/docs/quickstart) guide.\n- `VECTARA_API_KEY`: An API key that can perform queries on this corpus.\n\nHere's an example usage of the VectaraQueryToolSpec.\n\n```python\nfrom llama_index.tools.vectara_query import VectaraQueryToolSpec\nfrom llama_index.core.agent.workflow import FunctionAgent\nfrom llama_index.llms.openai import OpenAI\n\n# Connecting to a Vectara corpus about Electric Vehicles\ntool_spec = VectaraQueryToolSpec()\n\nagent = FunctionAgent(\n tools=tool_spec.to_tool_list(),\n llm=OpenAI(model=\"gpt-4.1\"),\n)\n\nprint(await agent.run(\"What are the different types of electric vehicles?\"))\n```\n\nThe available tools are:\n\n`semantic_search`: A tool that accepts a query and uses semantic search to obtain the top search results.\n\n`rag_query`: A tool that accepts a query and uses RAG to obtain a generative response grounded in the search results.\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index tools vectara query integration",
"version": "0.4.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "4dfb49882e52878dc79aaf0c0929404f05439d6efd1c956491c9bc8b4b8226ef",
"md5": "99557b3e4c0e584fe6c6cbc256657381",
"sha256": "93ea6194d2d452a1aa8aecbf71af0c8cf876d6b81aa72470c77af6b88bdfc733"
},
"downloads": -1,
"filename": "llama_index_tools_vectara_query-0.4.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "99557b3e4c0e584fe6c6cbc256657381",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 6077,
"upload_time": "2025-09-08T20:49:24",
"upload_time_iso_8601": "2025-09-08T20:49:24.107816Z",
"url": "https://files.pythonhosted.org/packages/4d/fb/49882e52878dc79aaf0c0929404f05439d6efd1c956491c9bc8b4b8226ef/llama_index_tools_vectara_query-0.4.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7af494281a5f46c486cfa8372187c17b613a9427680933463d3ad1c324378ac7",
"md5": "0b2e5e94620898b9f81066d7b6e6e5fe",
"sha256": "28fb7071ad05175375bdd1a8da09fa31299acf3d87a48ce5efa78cf3be603a3e"
},
"downloads": -1,
"filename": "llama_index_tools_vectara_query-0.4.1.tar.gz",
"has_sig": false,
"md5_digest": "0b2e5e94620898b9f81066d7b6e6e5fe",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 6326,
"upload_time": "2025-09-08T20:49:24",
"upload_time_iso_8601": "2025-09-08T20:49:24.833279Z",
"url": "https://files.pythonhosted.org/packages/7a/f4/94281a5f46c486cfa8372187c17b613a9427680933463d3ad1c324378ac7/llama_index_tools_vectara_query-0.4.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-08 20:49:24",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-tools-vectara-query"
}