llama-index-tools-waii


Namellama-index-tools-waii JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
Summaryllama-index tools waii integration
upload_time2025-07-30 20:54:35
maintainerwangdatan
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Waii Tool

This tool connects to database connections managed by Waii, which allows generic SQL queries, do performance analyze, describe a SQL query, and more.

## Usage

First you need to create a waii.ai account, you request an account from [here](https://waii.ai/).

Initialize the tool with your account credentials:

```python
from llama_index.tools.waii import WaiiToolSpec

waii_tool = WaiiToolSpec(
    url="https://tweakit.waii.ai/api/",
    # API Key of Waii (not OpenAI API key)
    api_key="...",
    # Connection key of WAII connected database, see https://github.com/waii-ai/waii-sdk-py#get-connections
    database_key="...",
)
```

## Tools

The tools available are:

- `get_answer`: Get answer to natural language question (which generate a SQL query, run it, explain the result)
- `describe_query`: Describe a SQL query
- `performance_analyze`: Analyze performance of a SQL query (by query_id)
- `diff_query`: Compare two SQL queries
- `describe_dataset`: Describe dataset, such as table, schema, etc.
- `transcode`: Transcode SQL query to another SQL dialect
- `get_semantic_contexts`: Get semantic contexts of a SQL query
- `generate_query_only`: Generate SQL query only (not run it)
- `run_query`: Run a SQL query

You can also load the data directly call `load_data`

## Examples

### Load data

```python
documents = waii_tool.load_data("Get all tables with their number of columns")
index = VectorStoreIndex.from_documents(documents).as_query_engine()

print(index.query("Which table contains most columns?"))
```

### Use as a Tool

#### Initialize the agent:

```python
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.llms.openai import OpenAI

agent = FunctionAgent(
    tools=waii_tool.to_tool_list(), llm=OpenAI(model="gpt-4-1106-preview")
)
```

#### Ask simple question

```python
from llama_index.core.workflow import Context

ctx = Context(agent)

print(
    await agent.run(
        "Give me top 3 countries with the most number of car factory", ctx=ctx
    )
)
print(
    await agent.run("What are the car factories of these countries", ctx=ctx)
)
```

#### Do performance analyze

```python
from llama_index.core.workflow import Context

ctx = Context(agent)

print(
    await agent.run(
        "Give me top 3 longest running queries, and their duration.", ctx=ctx
    )
)
print(await agent.run("analyze the 2nd-longest running query", ctx=ctx))
```

#### Diff two queries

```python
previous_query = """
SELECT
    employee_id,
    department,
    salary,
    AVG(salary) OVER (PARTITION BY department) AS department_avg_salary,
    salary - AVG(salary) OVER (PARTITION BY department) AS diff_from_avg
FROM
    employees;
"""
current_query = """
SELECT
    employee_id,
    department,
    salary,
    MAX(salary) OVER (PARTITION BY department) AS department_max_salary,
    salary - AVG(salary) OVER (PARTITION BY department) AS diff_from_avg
FROM
    employees;
LIMIT 100;
"""
print(
    await agent.run(
        f"tell me difference between {previous_query} and {current_query}",
        ctx=ctx,
    )
)
```

#### Describe dataset

```python
print(await agent.run("Summarize the dataset", ctx=ctx))
print(
    await agent.run(
        "Give me questions which I can ask about this dataset", ctx=ctx
    )
)
```

#### Describe a query

```python
q = """
SELECT
    employee_id,
    department,
    salary,
    AVG(salary) OVER (PARTITION BY department) AS department_avg_salary,
    salary - AVG(salary) OVER (PARTITION BY department) AS diff_from_avg
FROM
    employees;
"""
print(await agent.run(f"what this query can do? {q}", ctx=ctx))
```

#### Migrate query to another dialect

```python
q = """
from pyspark.sql import SparkSession
from pyspark.sql.functions import avg, col
from pyspark.sql.window import Window

# Initialize Spark session
spark = SparkSession.builder.appName("example").getOrCreate()

# Assuming you have a DataFrame called 'employees'
# If not, you need to read your data into a DataFrame first

# Define window specification
windowSpec = Window.partitionBy("department")

# Perform the query
result = (employees
          .select(
              col("employee_id"),
              col("department"),
              col("salary"),
              avg("salary").over(windowSpec).alias("department_avg_salary"),
              (col("salary") - avg("salary").over(windowSpec)).alias("diff_from_avg")
          ))

# Show the result
result.show()
"""
print(
    await agent.run(f"translate this pyspark query {q}, to Snowflake", ctx=ctx)
)
```

### Use Waii API directly

You can also use Waii API directly, see [here](https://github.com/waii-ai/waii-sdk-py)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-tools-waii",
    "maintainer": "wangdatan",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/34/ec/72bd1c25c574162fa34e73984e97dcdc36a1cce4ac324565b11e0be610bc/llama_index_tools_waii-0.4.0.tar.gz",
    "platform": null,
    "description": "# Waii Tool\n\nThis tool connects to database connections managed by Waii, which allows generic SQL queries, do performance analyze, describe a SQL query, and more.\n\n## Usage\n\nFirst you need to create a waii.ai account, you request an account from [here](https://waii.ai/).\n\nInitialize the tool with your account credentials:\n\n```python\nfrom llama_index.tools.waii import WaiiToolSpec\n\nwaii_tool = WaiiToolSpec(\n    url=\"https://tweakit.waii.ai/api/\",\n    # API Key of Waii (not OpenAI API key)\n    api_key=\"...\",\n    # Connection key of WAII connected database, see https://github.com/waii-ai/waii-sdk-py#get-connections\n    database_key=\"...\",\n)\n```\n\n## Tools\n\nThe tools available are:\n\n- `get_answer`: Get answer to natural language question (which generate a SQL query, run it, explain the result)\n- `describe_query`: Describe a SQL query\n- `performance_analyze`: Analyze performance of a SQL query (by query_id)\n- `diff_query`: Compare two SQL queries\n- `describe_dataset`: Describe dataset, such as table, schema, etc.\n- `transcode`: Transcode SQL query to another SQL dialect\n- `get_semantic_contexts`: Get semantic contexts of a SQL query\n- `generate_query_only`: Generate SQL query only (not run it)\n- `run_query`: Run a SQL query\n\nYou can also load the data directly call `load_data`\n\n## Examples\n\n### Load data\n\n```python\ndocuments = waii_tool.load_data(\"Get all tables with their number of columns\")\nindex = VectorStoreIndex.from_documents(documents).as_query_engine()\n\nprint(index.query(\"Which table contains most columns?\"))\n```\n\n### Use as a Tool\n\n#### Initialize the agent:\n\n```python\nfrom llama_index.core.agent.workflow import FunctionAgent\nfrom llama_index.llms.openai import OpenAI\n\nagent = FunctionAgent(\n    tools=waii_tool.to_tool_list(), llm=OpenAI(model=\"gpt-4-1106-preview\")\n)\n```\n\n#### Ask simple question\n\n```python\nfrom llama_index.core.workflow import Context\n\nctx = Context(agent)\n\nprint(\n    await agent.run(\n        \"Give me top 3 countries with the most number of car factory\", ctx=ctx\n    )\n)\nprint(\n    await agent.run(\"What are the car factories of these countries\", ctx=ctx)\n)\n```\n\n#### Do performance analyze\n\n```python\nfrom llama_index.core.workflow import Context\n\nctx = Context(agent)\n\nprint(\n    await agent.run(\n        \"Give me top 3 longest running queries, and their duration.\", ctx=ctx\n    )\n)\nprint(await agent.run(\"analyze the 2nd-longest running query\", ctx=ctx))\n```\n\n#### Diff two queries\n\n```python\nprevious_query = \"\"\"\nSELECT\n    employee_id,\n    department,\n    salary,\n    AVG(salary) OVER (PARTITION BY department) AS department_avg_salary,\n    salary - AVG(salary) OVER (PARTITION BY department) AS diff_from_avg\nFROM\n    employees;\n\"\"\"\ncurrent_query = \"\"\"\nSELECT\n    employee_id,\n    department,\n    salary,\n    MAX(salary) OVER (PARTITION BY department) AS department_max_salary,\n    salary - AVG(salary) OVER (PARTITION BY department) AS diff_from_avg\nFROM\n    employees;\nLIMIT 100;\n\"\"\"\nprint(\n    await agent.run(\n        f\"tell me difference between {previous_query} and {current_query}\",\n        ctx=ctx,\n    )\n)\n```\n\n#### Describe dataset\n\n```python\nprint(await agent.run(\"Summarize the dataset\", ctx=ctx))\nprint(\n    await agent.run(\n        \"Give me questions which I can ask about this dataset\", ctx=ctx\n    )\n)\n```\n\n#### Describe a query\n\n```python\nq = \"\"\"\nSELECT\n    employee_id,\n    department,\n    salary,\n    AVG(salary) OVER (PARTITION BY department) AS department_avg_salary,\n    salary - AVG(salary) OVER (PARTITION BY department) AS diff_from_avg\nFROM\n    employees;\n\"\"\"\nprint(await agent.run(f\"what this query can do? {q}\", ctx=ctx))\n```\n\n#### Migrate query to another dialect\n\n```python\nq = \"\"\"\nfrom pyspark.sql import SparkSession\nfrom pyspark.sql.functions import avg, col\nfrom pyspark.sql.window import Window\n\n# Initialize Spark session\nspark = SparkSession.builder.appName(\"example\").getOrCreate()\n\n# Assuming you have a DataFrame called 'employees'\n# If not, you need to read your data into a DataFrame first\n\n# Define window specification\nwindowSpec = Window.partitionBy(\"department\")\n\n# Perform the query\nresult = (employees\n          .select(\n              col(\"employee_id\"),\n              col(\"department\"),\n              col(\"salary\"),\n              avg(\"salary\").over(windowSpec).alias(\"department_avg_salary\"),\n              (col(\"salary\") - avg(\"salary\").over(windowSpec)).alias(\"diff_from_avg\")\n          ))\n\n# Show the result\nresult.show()\n\"\"\"\nprint(\n    await agent.run(f\"translate this pyspark query {q}, to Snowflake\", ctx=ctx)\n)\n```\n\n### Use Waii API directly\n\nYou can also use Waii API directly, see [here](https://github.com/waii-ai/waii-sdk-py)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index tools waii integration",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "21590afef41771be1f2ee6116dd690fac4a02cef45dc7e22bcf90e6a18db1f44",
                "md5": "6f168781a8fd3660ff980b791853ebe9",
                "sha256": "1d522c2384ae0d5265569b812f912810db237fb89d90c56c361c2e73bfbdf139"
            },
            "downloads": -1,
            "filename": "llama_index_tools_waii-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6f168781a8fd3660ff980b791853ebe9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 6288,
            "upload_time": "2025-07-30T20:54:34",
            "upload_time_iso_8601": "2025-07-30T20:54:34.997886Z",
            "url": "https://files.pythonhosted.org/packages/21/59/0afef41771be1f2ee6116dd690fac4a02cef45dc7e22bcf90e6a18db1f44/llama_index_tools_waii-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "34ec72bd1c25c574162fa34e73984e97dcdc36a1cce4ac324565b11e0be610bc",
                "md5": "28b59567944e3275d0f4b9e2ec888341",
                "sha256": "acbfb925408c11bdacdc47ae483a03536d48b8c1287d0732bd39f182299d4864"
            },
            "downloads": -1,
            "filename": "llama_index_tools_waii-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "28b59567944e3275d0f4b9e2ec888341",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 6643,
            "upload_time": "2025-07-30T20:54:35",
            "upload_time_iso_8601": "2025-07-30T20:54:35.827576Z",
            "url": "https://files.pythonhosted.org/packages/34/ec/72bd1c25c574162fa34e73984e97dcdc36a1cce4ac324565b11e0be610bc/llama_index_tools_waii-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 20:54:35",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-tools-waii"
}
        
Elapsed time: 1.72332s