llama-index-vector-stores-mariadb


Namellama-index-vector-stores-mariadb JSON
Version 0.3.1 PyPI version JSON
download
home_pageNone
Summaryllama-index vector_stores mariadb integration
upload_time2025-02-13 23:21:25
maintainerNone
docs_urlNone
authorKalin Arsov
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaIndex Vector_Stores Integration: MariaDB

Starting with version `11.7.1`, the MariaDB relational database has vector search functionality integrated.
Thus now it can be used as a fully-functional vector store in LlamaIndex.

To learn more about the feature in MariaDB, check its [Vector Overview documentation](https://mariadb.com/kb/en/vector-overview/).

Please note that versions before `0.3.0` of this package are not compatible with MariaDB 11.7 and later.
They are compatible only with the one-off `MariaDB 11.6 Vector` preview release which used a slightly different syntax.

## Installation

```shell
pip install llama-index-vector-stores-mariadb
```

## Usage

```python
from llama_index.vector_stores.mariadb import MariaDBVectorStore

vector_store = MariaDBVectorStore.from_params(
    host="localhost",
    port=3306,
    user="llamaindex",
    password="password",
    database="vectordb",
    table_name="llama_index_vectorstore",
    embed_dim=1536,  # OpenAI embedding dimension
    default_m=6,  # MariaDB Vector system parameter
    ef_search=20,  # MariaDB Vector system parameter
)
```

## Development

### Running Integration Tests

A suite of integration tests is available to verify the MariaDB vector store integration.
The test suite needs a MariaDB database with vector search support up and running. If not found, the tests are skipped.
To facilitate that, a sample `docker-compose.yaml` file is provided, so you can simply do:

```shell
docker compose -f tests/docker-compose.yaml up

pytest -v

# Clean up when you finish testing
docker compose -f tests/docker-compose.yaml down
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-vector-stores-mariadb",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Kalin Arsov",
    "author_email": "kalin@skysql.com",
    "download_url": "https://files.pythonhosted.org/packages/52/72/31259da5336ea976d7c582bf7d7f38704e9af3c623e21ee286e86a0d1a62/llama_index_vector_stores_mariadb-0.3.1.tar.gz",
    "platform": null,
    "description": "# LlamaIndex Vector_Stores Integration: MariaDB\n\nStarting with version `11.7.1`, the MariaDB relational database has vector search functionality integrated.\nThus now it can be used as a fully-functional vector store in LlamaIndex.\n\nTo learn more about the feature in MariaDB, check its [Vector Overview documentation](https://mariadb.com/kb/en/vector-overview/).\n\nPlease note that versions before `0.3.0` of this package are not compatible with MariaDB 11.7 and later.\nThey are compatible only with the one-off `MariaDB 11.6 Vector` preview release which used a slightly different syntax.\n\n## Installation\n\n```shell\npip install llama-index-vector-stores-mariadb\n```\n\n## Usage\n\n```python\nfrom llama_index.vector_stores.mariadb import MariaDBVectorStore\n\nvector_store = MariaDBVectorStore.from_params(\n    host=\"localhost\",\n    port=3306,\n    user=\"llamaindex\",\n    password=\"password\",\n    database=\"vectordb\",\n    table_name=\"llama_index_vectorstore\",\n    embed_dim=1536,  # OpenAI embedding dimension\n    default_m=6,  # MariaDB Vector system parameter\n    ef_search=20,  # MariaDB Vector system parameter\n)\n```\n\n## Development\n\n### Running Integration Tests\n\nA suite of integration tests is available to verify the MariaDB vector store integration.\nThe test suite needs a MariaDB database with vector search support up and running. If not found, the tests are skipped.\nTo facilitate that, a sample `docker-compose.yaml` file is provided, so you can simply do:\n\n```shell\ndocker compose -f tests/docker-compose.yaml up\n\npytest -v\n\n# Clean up when you finish testing\ndocker compose -f tests/docker-compose.yaml down\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index vector_stores mariadb integration",
    "version": "0.3.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0dfa4bae35286f87cfb3fc2397a8da3d204831f284dc50f6fda3a635c7d333e1",
                "md5": "2635f7baeb67b3d5867ba306660592c1",
                "sha256": "c657a247a928f60e5a160c28c7178aa9787d087db48cd779a9a94f9669745bc5"
            },
            "downloads": -1,
            "filename": "llama_index_vector_stores_mariadb-0.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2635f7baeb67b3d5867ba306660592c1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 6630,
            "upload_time": "2025-02-13T23:21:23",
            "upload_time_iso_8601": "2025-02-13T23:21:23.645574Z",
            "url": "https://files.pythonhosted.org/packages/0d/fa/4bae35286f87cfb3fc2397a8da3d204831f284dc50f6fda3a635c7d333e1/llama_index_vector_stores_mariadb-0.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "527231259da5336ea976d7c582bf7d7f38704e9af3c623e21ee286e86a0d1a62",
                "md5": "022fad340032942b5ab07b66883ec23b",
                "sha256": "0a1345e5d8cd6f0295545f01a07baae5f749c8ec047b91afd775ba6a245bba56"
            },
            "downloads": -1,
            "filename": "llama_index_vector_stores_mariadb-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "022fad340032942b5ab07b66883ec23b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 6156,
            "upload_time": "2025-02-13T23:21:25",
            "upload_time_iso_8601": "2025-02-13T23:21:25.335456Z",
            "url": "https://files.pythonhosted.org/packages/52/72/31259da5336ea976d7c582bf7d7f38704e9af3c623e21ee286e86a0d1a62/llama_index_vector_stores_mariadb-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-13 23:21:25",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-vector-stores-mariadb"
}
        
Elapsed time: 1.85489s