llama-parse


Namellama-parse JSON
Version 0.5.18 PyPI version JSON
download
home_pageNone
SummaryParse files into RAG-Optimized formats.
upload_time2024-12-18 15:45:45
maintainerNone
docs_urlNone
authorLogan Markewich
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaParse

[![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-parse)](https://pypi.org/project/llama-parse/)
[![GitHub contributors](https://img.shields.io/github/contributors/run-llama/llama_parse)](https://github.com/run-llama/llama_parse/graphs/contributors)
[![Discord](https://img.shields.io/discord/1059199217496772688)](https://discord.gg/dGcwcsnxhU)

LlamaParse is a **GenAI-native document parser** that can parse complex document data for any downstream LLM use case (RAG, agents).

It is really good at the following:

- ✅ **Broad file type support**: Parsing a variety of unstructured file types (.pdf, .pptx, .docx, .xlsx, .html) with text, tables, visual elements, weird layouts, and more.
- ✅ **Table recognition**: Parsing embedded tables accurately into text and semi-structured representations.
- ✅ **Multimodal parsing and chunking**: Extracting visual elements (images/diagrams) into structured formats and return image chunks using the latest multimodal models.
- ✅ **Custom parsing**: Input custom prompt instructions to customize the output the way you want it.

LlamaParse directly integrates with [LlamaIndex](https://github.com/run-llama/llama_index).

The free plan is up to 1000 pages a day. Paid plan is free 7k pages per week + 0.3c per additional page by default. There is a sandbox available to test the API [**https://cloud.llamaindex.ai/parse ↗**](https://cloud.llamaindex.ai/parse).

Read below for some quickstart information, or see the [full documentation](https://docs.cloud.llamaindex.ai/).

If you're a company interested in enterprise RAG solutions, and/or high volume/on-prem usage of LlamaParse, come [talk to us](https://www.llamaindex.ai/contact).

## Getting Started

First, login and get an api-key from [**https://cloud.llamaindex.ai/api-key ↗**](https://cloud.llamaindex.ai/api-key).

Then, make sure you have the latest LlamaIndex version installed.

**NOTE:** If you are upgrading from v0.9.X, we recommend following our [migration guide](https://pretty-sodium-5e0.notion.site/v0-10-0-Migration-Guide-6ede431dcb8841b09ea171e7f133bd77), as well as uninstalling your previous version first.

```
pip uninstall llama-index  # run this if upgrading from v0.9.x or older
pip install -U llama-index --upgrade --no-cache-dir --force-reinstall
```

Lastly, install the package:

`pip install llama-parse`

Now you can parse your first PDF file using the command line interface. Use the command `llama-parse [file_paths]`. See the help text with `llama-parse --help`.

```bash
export LLAMA_CLOUD_API_KEY='llx-...'

# output as text
llama-parse my_file.pdf --result-type text --output-file output.txt

# output as markdown
llama-parse my_file.pdf --result-type markdown --output-file output.md

# output as raw json
llama-parse my_file.pdf --output-raw-json --output-file output.json
```

You can also create simple scripts:

```python
import nest_asyncio

nest_asyncio.apply()

from llama_parse import LlamaParse

parser = LlamaParse(
    api_key="llx-...",  # can also be set in your env as LLAMA_CLOUD_API_KEY
    result_type="markdown",  # "markdown" and "text" are available
    num_workers=4,  # if multiple files passed, split in `num_workers` API calls
    verbose=True,
    language="en",  # Optionally you can define a language, default=en
)

# sync
documents = parser.load_data("./my_file.pdf")

# sync batch
documents = parser.load_data(["./my_file1.pdf", "./my_file2.pdf"])

# async
documents = await parser.aload_data("./my_file.pdf")

# async batch
documents = await parser.aload_data(["./my_file1.pdf", "./my_file2.pdf"])
```

## Using with file object

You can parse a file object directly:

```python
import nest_asyncio

nest_asyncio.apply()

from llama_parse import LlamaParse

parser = LlamaParse(
    api_key="llx-...",  # can also be set in your env as LLAMA_CLOUD_API_KEY
    result_type="markdown",  # "markdown" and "text" are available
    num_workers=4,  # if multiple files passed, split in `num_workers` API calls
    verbose=True,
    language="en",  # Optionally you can define a language, default=en
)

file_name = "my_file1.pdf"
extra_info = {"file_name": file_name}

with open(f"./{file_name}", "rb") as f:
    # must provide extra_info with file_name key with passing file object
    documents = parser.load_data(f, extra_info=extra_info)

# you can also pass file bytes directly
with open(f"./{file_name}", "rb") as f:
    file_bytes = f.read()
    # must provide extra_info with file_name key with passing file bytes
    documents = parser.load_data(file_bytes, extra_info=extra_info)
```

## Using with `SimpleDirectoryReader`

You can also integrate the parser as the default PDF loader in `SimpleDirectoryReader`:

```python
import nest_asyncio

nest_asyncio.apply()

from llama_parse import LlamaParse
from llama_index.core import SimpleDirectoryReader

parser = LlamaParse(
    api_key="llx-...",  # can also be set in your env as LLAMA_CLOUD_API_KEY
    result_type="markdown",  # "markdown" and "text" are available
    verbose=True,
)

file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader(
    "./data", file_extractor=file_extractor
).load_data()
```

Full documentation for `SimpleDirectoryReader` can be found on the [LlamaIndex Documentation](https://docs.llamaindex.ai/en/stable/module_guides/loading/simpledirectoryreader.html).

## Examples

Several end-to-end indexing examples can be found in the examples folder

- [Getting Started](examples/demo_basic.ipynb)
- [Advanced RAG Example](examples/demo_advanced.ipynb)
- [Raw API Usage](examples/demo_api.ipynb)

## Documentation

[https://docs.cloud.llamaindex.ai/](https://docs.cloud.llamaindex.ai/)

## Terms of Service

See the [Terms of Service Here](./TOS.pdf).

## Get in Touch (LlamaCloud)

LlamaParse is part of LlamaCloud, our e2e enterprise RAG platform that provides out-of-the-box, production-ready connectors, indexing, and retrieval over your complex data sources. We offer SaaS and VPC options.

LlamaCloud is currently available via waitlist (join by [creating an account](https://cloud.llamaindex.ai/)). If you're interested in state-of-the-art quality and in centralizing your RAG efforts, come [get in touch with us](https://www.llamaindex.ai/contact).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-parse",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Logan Markewich",
    "author_email": "logan@llamaindex.ai",
    "download_url": "https://files.pythonhosted.org/packages/d6/3f/5c94899198c0833fe0b2300893d1ca7b315ec2fa5280fed1601d6b4dbc5c/llama_parse-0.5.18.tar.gz",
    "platform": null,
    "description": "# LlamaParse\n\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-parse)](https://pypi.org/project/llama-parse/)\n[![GitHub contributors](https://img.shields.io/github/contributors/run-llama/llama_parse)](https://github.com/run-llama/llama_parse/graphs/contributors)\n[![Discord](https://img.shields.io/discord/1059199217496772688)](https://discord.gg/dGcwcsnxhU)\n\nLlamaParse is a **GenAI-native document parser** that can parse complex document data for any downstream LLM use case (RAG, agents).\n\nIt is really good at the following:\n\n- \u2705 **Broad file type support**: Parsing a variety of unstructured file types (.pdf, .pptx, .docx, .xlsx, .html) with text, tables, visual elements, weird layouts, and more.\n- \u2705 **Table recognition**: Parsing embedded tables accurately into text and semi-structured representations.\n- \u2705 **Multimodal parsing and chunking**: Extracting visual elements (images/diagrams) into structured formats and return image chunks using the latest multimodal models.\n- \u2705 **Custom parsing**: Input custom prompt instructions to customize the output the way you want it.\n\nLlamaParse directly integrates with [LlamaIndex](https://github.com/run-llama/llama_index).\n\nThe free plan is up to 1000 pages a day. Paid plan is free 7k pages per week + 0.3c per additional page by default. There is a sandbox available to test the API [**https://cloud.llamaindex.ai/parse \u2197**](https://cloud.llamaindex.ai/parse).\n\nRead below for some quickstart information, or see the [full documentation](https://docs.cloud.llamaindex.ai/).\n\nIf you're a company interested in enterprise RAG solutions, and/or high volume/on-prem usage of LlamaParse, come [talk to us](https://www.llamaindex.ai/contact).\n\n## Getting Started\n\nFirst, login and get an api-key from [**https://cloud.llamaindex.ai/api-key \u2197**](https://cloud.llamaindex.ai/api-key).\n\nThen, make sure you have the latest LlamaIndex version installed.\n\n**NOTE:** If you are upgrading from v0.9.X, we recommend following our [migration guide](https://pretty-sodium-5e0.notion.site/v0-10-0-Migration-Guide-6ede431dcb8841b09ea171e7f133bd77), as well as uninstalling your previous version first.\n\n```\npip uninstall llama-index  # run this if upgrading from v0.9.x or older\npip install -U llama-index --upgrade --no-cache-dir --force-reinstall\n```\n\nLastly, install the package:\n\n`pip install llama-parse`\n\nNow you can parse your first PDF file using the command line interface. Use the command `llama-parse [file_paths]`. See the help text with `llama-parse --help`.\n\n```bash\nexport LLAMA_CLOUD_API_KEY='llx-...'\n\n# output as text\nllama-parse my_file.pdf --result-type text --output-file output.txt\n\n# output as markdown\nllama-parse my_file.pdf --result-type markdown --output-file output.md\n\n# output as raw json\nllama-parse my_file.pdf --output-raw-json --output-file output.json\n```\n\nYou can also create simple scripts:\n\n```python\nimport nest_asyncio\n\nnest_asyncio.apply()\n\nfrom llama_parse import LlamaParse\n\nparser = LlamaParse(\n    api_key=\"llx-...\",  # can also be set in your env as LLAMA_CLOUD_API_KEY\n    result_type=\"markdown\",  # \"markdown\" and \"text\" are available\n    num_workers=4,  # if multiple files passed, split in `num_workers` API calls\n    verbose=True,\n    language=\"en\",  # Optionally you can define a language, default=en\n)\n\n# sync\ndocuments = parser.load_data(\"./my_file.pdf\")\n\n# sync batch\ndocuments = parser.load_data([\"./my_file1.pdf\", \"./my_file2.pdf\"])\n\n# async\ndocuments = await parser.aload_data(\"./my_file.pdf\")\n\n# async batch\ndocuments = await parser.aload_data([\"./my_file1.pdf\", \"./my_file2.pdf\"])\n```\n\n## Using with file object\n\nYou can parse a file object directly:\n\n```python\nimport nest_asyncio\n\nnest_asyncio.apply()\n\nfrom llama_parse import LlamaParse\n\nparser = LlamaParse(\n    api_key=\"llx-...\",  # can also be set in your env as LLAMA_CLOUD_API_KEY\n    result_type=\"markdown\",  # \"markdown\" and \"text\" are available\n    num_workers=4,  # if multiple files passed, split in `num_workers` API calls\n    verbose=True,\n    language=\"en\",  # Optionally you can define a language, default=en\n)\n\nfile_name = \"my_file1.pdf\"\nextra_info = {\"file_name\": file_name}\n\nwith open(f\"./{file_name}\", \"rb\") as f:\n    # must provide extra_info with file_name key with passing file object\n    documents = parser.load_data(f, extra_info=extra_info)\n\n# you can also pass file bytes directly\nwith open(f\"./{file_name}\", \"rb\") as f:\n    file_bytes = f.read()\n    # must provide extra_info with file_name key with passing file bytes\n    documents = parser.load_data(file_bytes, extra_info=extra_info)\n```\n\n## Using with `SimpleDirectoryReader`\n\nYou can also integrate the parser as the default PDF loader in `SimpleDirectoryReader`:\n\n```python\nimport nest_asyncio\n\nnest_asyncio.apply()\n\nfrom llama_parse import LlamaParse\nfrom llama_index.core import SimpleDirectoryReader\n\nparser = LlamaParse(\n    api_key=\"llx-...\",  # can also be set in your env as LLAMA_CLOUD_API_KEY\n    result_type=\"markdown\",  # \"markdown\" and \"text\" are available\n    verbose=True,\n)\n\nfile_extractor = {\".pdf\": parser}\ndocuments = SimpleDirectoryReader(\n    \"./data\", file_extractor=file_extractor\n).load_data()\n```\n\nFull documentation for `SimpleDirectoryReader` can be found on the [LlamaIndex Documentation](https://docs.llamaindex.ai/en/stable/module_guides/loading/simpledirectoryreader.html).\n\n## Examples\n\nSeveral end-to-end indexing examples can be found in the examples folder\n\n- [Getting Started](examples/demo_basic.ipynb)\n- [Advanced RAG Example](examples/demo_advanced.ipynb)\n- [Raw API Usage](examples/demo_api.ipynb)\n\n## Documentation\n\n[https://docs.cloud.llamaindex.ai/](https://docs.cloud.llamaindex.ai/)\n\n## Terms of Service\n\nSee the [Terms of Service Here](./TOS.pdf).\n\n## Get in Touch (LlamaCloud)\n\nLlamaParse is part of LlamaCloud, our e2e enterprise RAG platform that provides out-of-the-box, production-ready connectors, indexing, and retrieval over your complex data sources. We offer SaaS and VPC options.\n\nLlamaCloud is currently available via waitlist (join by [creating an account](https://cloud.llamaindex.ai/)). If you're interested in state-of-the-art quality and in centralizing your RAG efforts, come [get in touch with us](https://www.llamaindex.ai/contact).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Parse files into RAG-Optimized formats.",
    "version": "0.5.18",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d6bd7bca9c086bf57af174001a5faacc4b51b6467c0202e73cb26b18de144abe",
                "md5": "adca384e6ec3eaa6bf8b90f9344e8d67",
                "sha256": "b3432a94e2507bd37cd86a25911c3f8dc74ff4293fa8e1583a2b3677129793dc"
            },
            "downloads": -1,
            "filename": "llama_parse-0.5.18-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "adca384e6ec3eaa6bf8b90f9344e8d67",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 15033,
            "upload_time": "2024-12-18T15:45:42",
            "upload_time_iso_8601": "2024-12-18T15:45:42.297196Z",
            "url": "https://files.pythonhosted.org/packages/d6/bd/7bca9c086bf57af174001a5faacc4b51b6467c0202e73cb26b18de144abe/llama_parse-0.5.18-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d63f5c94899198c0833fe0b2300893d1ca7b315ec2fa5280fed1601d6b4dbc5c",
                "md5": "ef3e81896358a6d98e4c9de88c01be13",
                "sha256": "5e8da9a3a02c79b609d378f32f6a29bca7c3f20b3fe1df6ccb8b4e775b656f42"
            },
            "downloads": -1,
            "filename": "llama_parse-0.5.18.tar.gz",
            "has_sig": false,
            "md5_digest": "ef3e81896358a6d98e4c9de88c01be13",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 15725,
            "upload_time": "2024-12-18T15:45:45",
            "upload_time_iso_8601": "2024-12-18T15:45:45.215198Z",
            "url": "https://files.pythonhosted.org/packages/d6/3f/5c94899198c0833fe0b2300893d1ca7b315ec2fa5280fed1601d6b4dbc5c/llama_parse-0.5.18.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-18 15:45:45",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-parse"
}
        
Elapsed time: 0.42534s