llamarker


Namellamarker JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/RevanKumarD/LlaMarker
SummaryA universal GenAI-based local parser for complex documents of all types.
upload_time2025-01-13 13:37:13
maintainerNone
docs_urlNone
authorRevan Kumar Dhanasekaran
requires_python<4.0,>=3.10
licenseGPL-3.0-or-later
keywords markdown document parsing llama ai local parser genai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center" style="margin: 0; padding: 0;">
  <img src="llamarker/assets/Llamarker_logo.png" alt="LlaMarker Logo" width="200">
</p>

<h1 align="center">🖍️ LlaMarker</h1>

<p align="center">
  <b>Your go-to tool for converting and parsing documents into clean, well-structured Markdown!</b><br>
  <i>Fast, intuitive, and entirely local 💻🚀.</i>
</p>

<div align="center">
  
[![Python Versions](https://img.shields.io/badge/Python-3.10%2B-blue.svg)](https://www.python.org/downloads/release/python-380/)
[![License](https://img.shields.io/badge/License-Refer%20Marker%20Repo-lightgrey.svg)](https://github.com/VikParuchuri/marker)
[![PyPI version](https://img.shields.io/pypi/v/llamarker)](https://pypi.org/project/llamarker/)

</div>

---

## ✨ Key Features

- ✨ **All-in-One Parsing**  
  Supports **TXT**, **DOCX**, **PDF**, **PPT**, **XLSX**, and more—even processes images inside documents.

- 🖼️ **Visual Content Extraction**  
  Utilizes **Llama 3.2 Vision** to detect images, tables, charts, and diagrams, converting them into rich Markdown.

- 🏗️ **Built with Marker**  
  Extends the open-source [Marker](https://github.com/VikParuchuri/marker) parser to handle complex content types **locally**.

- 🛡️ **Local-First Privacy**  
  No cloud, no external servers—**all processing** happens on your machine.

---

## 🚀 How It Works

1. **Parsing & Conversion**

   - Parses and converts multiple file types (.txt, .docx, .pdf, .ppt, .xlsx, etc.) into Markdown.
   - Leverages **Marker** for accurate and efficient parsing of both text and visual elements.
   - Extracts images, charts, and tables, embedding them in Markdown.
   - _(Optional)_ Converts documents into PDFs using **LibreOffice** for easy viewing.

2. **Visual Analysis**

   - Distinguishes logos from content-rich images.
   - Extracts and preserves the original language from images.
   - Uses multiple agents to extract useful information from the images.

3. **Fast & Efficient**

   - Supports parallel processing for faster handling of large folders.

4. **Streamlit GUI**
   - A user-friendly interface to upload and parse files (or multiple files at once!) or entire directories.
   - Download results directly from the GUI.

---

## 📑 Table of Contents

1. [Features](#features)
2. [Prerequisites](#prerequisites)
3. [Installation Options](#installation-options)
   - [Install via PyPI](#install-via-pypi)
   - [Local Development Setup](#local-development-setup)
4. [Basic Usage](#basic-usage)
   - [CLI Usage](#cli-usage)
   - [Streamlit GUI](#streamlit-gui)
5. [Advanced Usage](#advanced-usage)
   - [Command-Line Arguments](#command-line-arguments)
   - [Example Commands](#example-commands)
6. [Output Structure](#output-structure)
7. [Code Example](#code-example)
8. [Contributing](#contributing)
9. [License](#license)
10. [Acknowledgments](#acknowledgments)

---

## ✨ Features

- 📄 **Document Conversion**  
  Converts `.txt`, `.docx`, and other supported file types into `.pdf` using **LibreOffice** (optional if you only need to parse PDFs).

- 📊 **Page Counting**  
  Automatically counts pages in PDFs using **PyPDF2**.

- 🖼️ **Image Processing**  
  Analyzes images to differentiate logos from content-rich images. Extracts relevant data and updates the corresponding Markdown file.

- ✍️ **Markdown Parsing**  
  Uses **Marker** to generate clean, structured Markdown files from parsed PDFs.

- 🌐 **Multilingual Support**  
  Maintains the original language of the content during extraction.

- 📈 **Data Visualization**  
  Generates analysis plots based on the page counts of processed documents.

---

## ⚙️ Prerequisites

Before installing or running **LlaMarker**, please ensure you meet the following requirements:

1. **Python 3.10+**

   - Core language for running **LlaMarker**.
   - Verify your Python version:
     ```bash
     python --version
     ```

2. **Marker**

   - [Marker](https://github.com/VikParuchuri/marker) is an open-source parser that **LlaMarker** extends.
   - For a quick install, you can try:
     ```bash
     pip install marker-pdf
     ```
     This installs Marker’s **PDF** parsing capabilities.
   - If you plan to leverage GPUs, ensure **PyTorch** is installed with **CUDA** support (e.g., via `pytorch-cuda` or the official PyTorch distribution).
   - For advanced installation or customization, refer to the [official Marker GitHub repository](https://github.com/VikParuchuri/marker) for detailed instructions on cloning and building from source.
   - If installed, ensure Marker is in your `PATH` or specify its location with the `--marker_path` argument.

3. **LibreOffice**

   - Required for converting `.docx`, `.ppt`, `.xlsx`, etc., into `.pdf` before parsing.
   - **Linux** (Ubuntu/Debian example):
     ```bash
     sudo apt update
     sudo apt install libreoffice
     ```
   - **Windows**:  
     [Download the installer](https://www.libreoffice.org/download/download/) and consider adding LibreOffice to your system `PATH`.
   - **macOS**:
     - Download from [LibreOffice’s website](https://www.libreoffice.org/download/download/) or
     - Use Homebrew:
       ```bash
       brew install --cask libreoffice
       ```

4. **Ollama & Vision Models**

   - [Install Ollama](https://github.com/jmorganca/ollama) for your OS.
   - Pull the required model:
     ```bash
     ollama pull llama3.2-vision
     ```
   - Test run to ensure your model is set up correctly.

5. **Poetry** (for local development only)
   - Recommended dependency manager if you’re cloning the repository to develop or modify **LlaMarker**.
   - **Linux/Mac**:
     ```bash
     curl -sSL https://install.python-poetry.org | python3 -
     # (If not added to PATH automatically)
     export PATH="$HOME/.local/bin:$PATH"
     ```
   - **macOS (Homebrew)**:
     ```bash
     brew install poetry
     ```
   - **Windows**:  
     Follow instructions on [Poetry’s official site](https://python-poetry.org/docs/#installation).

---

## 🚀 Installation Options

### 1. Install via PyPI

The simplest approach—ideal if you just want to **use** LlaMarker rather than develop it:

```bash
pip install llamarker
```

- **Requires**: Python 3.10+
- After installing, you have access to two main commands:
  1. `llamarker` — CLI tool.
  2. `llamarker_gui` — Streamlit-based GUI for interactive use.

> **Note**: LibreOffice, Marker, and any optional OCR components need to be installed separately, if you plan to use their respective features.

---

### 2. Local Development Setup

If you plan to contribute or dive into the source code:

1. **Clone the repository**:
   ```bash
   git clone https://github.com/RevanKumarD/LlaMarker.git
   cd LlaMarker
   ```
2. **Install dependencies** using **Poetry**:
   ```bash
   poetry install
   ```
3. **Run LlaMarker locally**:
   - **CLI**:
     ```bash
     poetry run python llamarker/llamarker.py --directory <directory_path>
     ```
   - **GUI**:
     ```bash
     poetry run streamlit run llamarker/llamarker_gui.py
     ```

> No `requirements.txt` is provided; **Poetry** is the recommended (and supported) method for local development.

---

## 📌 Basic Usage

### CLI Usage

#### Installed via PyPI

- **Process a folder**:
  ```bash
  llamarker --directory <directory_path>
  ```
- **Process a single file**:
  ```bash
  llamarker --file <file_path>
  ```

#### Local Development

- **CLI**:
  ```bash
  poetry run python llamarker/llamarker.py --directory <directory_path>
  ```

---

### Streamlit GUI

A user-friendly interface to upload files/directories, parse them, and download results.

- **Installed via PyPI**:
  ```bash
  llamarker_gui
  ```
- **Local Development**:
  ```bash
  poetry run streamlit run llamarker/llamarker_gui.py
  ```

Open the link (e.g., `http://localhost:8501`) in your browser to start using **LlaMarker** via GUI.

---

## 🔧 Advanced Usage

### Command-Line Arguments

| Argument         | Description                                                                                                                                          |
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--directory`    | **Root directory** containing documents to process.                                                                                                  |
| `--file`         | Path to a single file to process (optional).                                                                                                         |
| `--temp_dir`     | Temporary directory for intermediate files (optional).                                                                                               |
| `--save_pdfs`    | Flag to **save PDFs** in a separate directory (`PDFs`) under the root directory.                                                                     |
| `--output`       | Directory to **save output** files (optional). By default, parsed Markdown files are stored in `ParsedFiles` and images go under `ParsedFiles/pics`. |
| `--marker_path`  | Path to the **Marker** executable (optional). Auto-detects if `Marker` is in your `PATH`.                                                            |
| `--force_ocr`    | Force **OCR** on all pages, even if text is extractable. Useful for poorly formatted PDFs or PPTs.                                                   |
| `--languages`    | Comma-separated list of languages for OCR (default: `"en"`).                                                                                         |
| `--qa_evaluator` | Enable **QA Evaluator** for selecting the best response during image processing.                                                                     |
| `--verbose`      | Set verbosity level: **0** = WARNING, **1** = INFO, **2** = DEBUG (default: **0**).                                                                  |
| `--model`        | **Ollama** model for image analysis (default: `llama3.2-vision`). A local vision model is required for this to work.                                 |

---

### Example Commands

1. **Directory processing**:
   ```bash
   llamarker --directory /path/to/documents
   ```
2. **Single file with verbose output**:
   ```bash
   llamarker --file /path/to/document.docx --verbose 2
   ```
3. **Parsing with OCR in multiple languages**:
   ```bash
   llamarker --directory /path/to/docs --force_ocr --languages "en,de,fr"
   ```
4. **Save parsed PDFs to a custom folder**:
   ```bash
   llamarker --directory /path/to/docs --save_pdfs --output /path/to/output
   ```

---

## Output Structure

After processing, **LlaMarker** organizes files as follows:

- **`ParsedFiles`**
  - Contains the generated Markdown files.
  - **`pics`** — subfolder for extracted images.
- **`PDFs`**
  - Stores converted PDF files (if `--save_pdfs` is used).
- **`OutDir`**
  - Contains processed PDF files (used by the GUI).
- **`logs`**
  - Holds log files for each run (processing status, errors, etc.).

---

## Code Example

For local development, you can programmatically use **LlaMarker**:

```python
from llamarker import LlaMarker

llamarker = LlaMarker(
    input_dir="/path/to/documents",
    save_pdfs=True,
    output_dir="/path/to/output",
    verbose=1
)

# Process all documents in the specified directory
llamarker.process_documents()

# Generate summary info
results = llamarker.generate_summary()
for file, page_count in results:
    print(f"{file}: {page_count} pages")

# Generate analysis plots
llamarker.plot_analysis(llamarker.parent_dir)
```

---

## Contributing

Contributions are welcome! Feel free to open an issue or submit a pull request. Let’s make **LlaMarker** even more powerful—together. 🤝

---

## License

This project references the [Marker](https://github.com/VikParuchuri/marker) repository, which comes with its own license. Please review the Marker repo for licensing restrictions and guidelines.

© 2025 Revan Kumar Dhanasekaran. Released under the GPLv3 License.

---

## Acknowledgments

- **Huge thanks** to the [Marker](https://github.com/VikParuchuri/marker) project for providing an excellent foundation for parsing.
- **Special thanks** to the open-source community for continuous support and contributions.

---

<p align="center">
  <b>Happy Parsing!</b> 🌟
</p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RevanKumarD/LlaMarker",
    "name": "llamarker",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "markdown, document parsing, llama, AI, local parser, genai",
    "author": "Revan Kumar Dhanasekaran",
    "author_email": "revan.dhana@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/05/76/0fd24ad1ec4c159d0008e6b203709646d55152118da370e715fd0a79e2ff/llamarker-1.0.1.tar.gz",
    "platform": null,
    "description": "<p align=\"center\" style=\"margin: 0; padding: 0;\">\n  <img src=\"llamarker/assets/Llamarker_logo.png\" alt=\"LlaMarker Logo\" width=\"200\">\n</p>\n\n<h1 align=\"center\">\ud83d\udd8d\ufe0f LlaMarker</h1>\n\n<p align=\"center\">\n  <b>Your go-to tool for converting and parsing documents into clean, well-structured Markdown!</b><br>\n  <i>Fast, intuitive, and entirely local \ud83d\udcbb\ud83d\ude80.</i>\n</p>\n\n<div align=\"center\">\n  \n[![Python Versions](https://img.shields.io/badge/Python-3.10%2B-blue.svg)](https://www.python.org/downloads/release/python-380/)\n[![License](https://img.shields.io/badge/License-Refer%20Marker%20Repo-lightgrey.svg)](https://github.com/VikParuchuri/marker)\n[![PyPI version](https://img.shields.io/pypi/v/llamarker)](https://pypi.org/project/llamarker/)\n\n</div>\n\n---\n\n## \u2728 Key Features\n\n- \u2728 **All-in-One Parsing**  \n  Supports **TXT**, **DOCX**, **PDF**, **PPT**, **XLSX**, and more\u2014even processes images inside documents.\n\n- \ud83d\uddbc\ufe0f **Visual Content Extraction**  \n  Utilizes **Llama 3.2 Vision** to detect images, tables, charts, and diagrams, converting them into rich Markdown.\n\n- \ud83c\udfd7\ufe0f **Built with Marker**  \n  Extends the open-source [Marker](https://github.com/VikParuchuri/marker) parser to handle complex content types **locally**.\n\n- \ud83d\udee1\ufe0f **Local-First Privacy**  \n  No cloud, no external servers\u2014**all processing** happens on your machine.\n\n---\n\n## \ud83d\ude80 How It Works\n\n1. **Parsing & Conversion**\n\n   - Parses and converts multiple file types (.txt, .docx, .pdf, .ppt, .xlsx, etc.) into Markdown.\n   - Leverages **Marker** for accurate and efficient parsing of both text and visual elements.\n   - Extracts images, charts, and tables, embedding them in Markdown.\n   - _(Optional)_ Converts documents into PDFs using **LibreOffice** for easy viewing.\n\n2. **Visual Analysis**\n\n   - Distinguishes logos from content-rich images.\n   - Extracts and preserves the original language from images.\n   - Uses multiple agents to extract useful information from the images.\n\n3. **Fast & Efficient**\n\n   - Supports parallel processing for faster handling of large folders.\n\n4. **Streamlit GUI**\n   - A user-friendly interface to upload and parse files (or multiple files at once!) or entire directories.\n   - Download results directly from the GUI.\n\n---\n\n## \ud83d\udcd1 Table of Contents\n\n1. [Features](#features)\n2. [Prerequisites](#prerequisites)\n3. [Installation Options](#installation-options)\n   - [Install via PyPI](#install-via-pypi)\n   - [Local Development Setup](#local-development-setup)\n4. [Basic Usage](#basic-usage)\n   - [CLI Usage](#cli-usage)\n   - [Streamlit GUI](#streamlit-gui)\n5. [Advanced Usage](#advanced-usage)\n   - [Command-Line Arguments](#command-line-arguments)\n   - [Example Commands](#example-commands)\n6. [Output Structure](#output-structure)\n7. [Code Example](#code-example)\n8. [Contributing](#contributing)\n9. [License](#license)\n10. [Acknowledgments](#acknowledgments)\n\n---\n\n## \u2728 Features\n\n- \ud83d\udcc4 **Document Conversion**  \n  Converts `.txt`, `.docx`, and other supported file types into `.pdf` using **LibreOffice** (optional if you only need to parse PDFs).\n\n- \ud83d\udcca **Page Counting**  \n  Automatically counts pages in PDFs using **PyPDF2**.\n\n- \ud83d\uddbc\ufe0f **Image Processing**  \n  Analyzes images to differentiate logos from content-rich images. Extracts relevant data and updates the corresponding Markdown file.\n\n- \u270d\ufe0f **Markdown Parsing**  \n  Uses **Marker** to generate clean, structured Markdown files from parsed PDFs.\n\n- \ud83c\udf10 **Multilingual Support**  \n  Maintains the original language of the content during extraction.\n\n- \ud83d\udcc8 **Data Visualization**  \n  Generates analysis plots based on the page counts of processed documents.\n\n---\n\n## \u2699\ufe0f Prerequisites\n\nBefore installing or running **LlaMarker**, please ensure you meet the following requirements:\n\n1. **Python 3.10+**\n\n   - Core language for running **LlaMarker**.\n   - Verify your Python version:\n     ```bash\n     python --version\n     ```\n\n2. **Marker**\n\n   - [Marker](https://github.com/VikParuchuri/marker) is an open-source parser that **LlaMarker** extends.\n   - For a quick install, you can try:\n     ```bash\n     pip install marker-pdf\n     ```\n     This installs Marker\u2019s **PDF** parsing capabilities.\n   - If you plan to leverage GPUs, ensure **PyTorch** is installed with **CUDA** support (e.g., via `pytorch-cuda` or the official PyTorch distribution).\n   - For advanced installation or customization, refer to the [official Marker GitHub repository](https://github.com/VikParuchuri/marker) for detailed instructions on cloning and building from source.\n   - If installed, ensure Marker is in your `PATH` or specify its location with the `--marker_path` argument.\n\n3. **LibreOffice**\n\n   - Required for converting `.docx`, `.ppt`, `.xlsx`, etc., into `.pdf` before parsing.\n   - **Linux** (Ubuntu/Debian example):\n     ```bash\n     sudo apt update\n     sudo apt install libreoffice\n     ```\n   - **Windows**:  \n     [Download the installer](https://www.libreoffice.org/download/download/) and consider adding LibreOffice to your system `PATH`.\n   - **macOS**:\n     - Download from [LibreOffice\u2019s website](https://www.libreoffice.org/download/download/) or\n     - Use Homebrew:\n       ```bash\n       brew install --cask libreoffice\n       ```\n\n4. **Ollama & Vision Models**\n\n   - [Install Ollama](https://github.com/jmorganca/ollama) for your OS.\n   - Pull the required model:\n     ```bash\n     ollama pull llama3.2-vision\n     ```\n   - Test run to ensure your model is set up correctly.\n\n5. **Poetry** (for local development only)\n   - Recommended dependency manager if you\u2019re cloning the repository to develop or modify **LlaMarker**.\n   - **Linux/Mac**:\n     ```bash\n     curl -sSL https://install.python-poetry.org | python3 -\n     # (If not added to PATH automatically)\n     export PATH=\"$HOME/.local/bin:$PATH\"\n     ```\n   - **macOS (Homebrew)**:\n     ```bash\n     brew install poetry\n     ```\n   - **Windows**:  \n     Follow instructions on [Poetry\u2019s official site](https://python-poetry.org/docs/#installation).\n\n---\n\n## \ud83d\ude80 Installation Options\n\n### 1. Install via PyPI\n\nThe simplest approach\u2014ideal if you just want to **use** LlaMarker rather than develop it:\n\n```bash\npip install llamarker\n```\n\n- **Requires**: Python 3.10+\n- After installing, you have access to two main commands:\n  1. `llamarker` \u2014 CLI tool.\n  2. `llamarker_gui` \u2014 Streamlit-based GUI for interactive use.\n\n> **Note**: LibreOffice, Marker, and any optional OCR components need to be installed separately, if you plan to use their respective features.\n\n---\n\n### 2. Local Development Setup\n\nIf you plan to contribute or dive into the source code:\n\n1. **Clone the repository**:\n   ```bash\n   git clone https://github.com/RevanKumarD/LlaMarker.git\n   cd LlaMarker\n   ```\n2. **Install dependencies** using **Poetry**:\n   ```bash\n   poetry install\n   ```\n3. **Run LlaMarker locally**:\n   - **CLI**:\n     ```bash\n     poetry run python llamarker/llamarker.py --directory <directory_path>\n     ```\n   - **GUI**:\n     ```bash\n     poetry run streamlit run llamarker/llamarker_gui.py\n     ```\n\n> No `requirements.txt` is provided; **Poetry** is the recommended (and supported) method for local development.\n\n---\n\n## \ud83d\udccc Basic Usage\n\n### CLI Usage\n\n#### Installed via PyPI\n\n- **Process a folder**:\n  ```bash\n  llamarker --directory <directory_path>\n  ```\n- **Process a single file**:\n  ```bash\n  llamarker --file <file_path>\n  ```\n\n#### Local Development\n\n- **CLI**:\n  ```bash\n  poetry run python llamarker/llamarker.py --directory <directory_path>\n  ```\n\n---\n\n### Streamlit GUI\n\nA user-friendly interface to upload files/directories, parse them, and download results.\n\n- **Installed via PyPI**:\n  ```bash\n  llamarker_gui\n  ```\n- **Local Development**:\n  ```bash\n  poetry run streamlit run llamarker/llamarker_gui.py\n  ```\n\nOpen the link (e.g., `http://localhost:8501`) in your browser to start using **LlaMarker** via GUI.\n\n---\n\n## \ud83d\udd27 Advanced Usage\n\n### Command-Line Arguments\n\n| Argument         | Description                                                                                                                                          |\n| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |\n| `--directory`    | **Root directory** containing documents to process.                                                                                                  |\n| `--file`         | Path to a single file to process (optional).                                                                                                         |\n| `--temp_dir`     | Temporary directory for intermediate files (optional).                                                                                               |\n| `--save_pdfs`    | Flag to **save PDFs** in a separate directory (`PDFs`) under the root directory.                                                                     |\n| `--output`       | Directory to **save output** files (optional). By default, parsed Markdown files are stored in `ParsedFiles` and images go under `ParsedFiles/pics`. |\n| `--marker_path`  | Path to the **Marker** executable (optional). Auto-detects if `Marker` is in your `PATH`.                                                            |\n| `--force_ocr`    | Force **OCR** on all pages, even if text is extractable. Useful for poorly formatted PDFs or PPTs.                                                   |\n| `--languages`    | Comma-separated list of languages for OCR (default: `\"en\"`).                                                                                         |\n| `--qa_evaluator` | Enable **QA Evaluator** for selecting the best response during image processing.                                                                     |\n| `--verbose`      | Set verbosity level: **0** = WARNING, **1** = INFO, **2** = DEBUG (default: **0**).                                                                  |\n| `--model`        | **Ollama** model for image analysis (default: `llama3.2-vision`). A local vision model is required for this to work.                                 |\n\n---\n\n### Example Commands\n\n1. **Directory processing**:\n   ```bash\n   llamarker --directory /path/to/documents\n   ```\n2. **Single file with verbose output**:\n   ```bash\n   llamarker --file /path/to/document.docx --verbose 2\n   ```\n3. **Parsing with OCR in multiple languages**:\n   ```bash\n   llamarker --directory /path/to/docs --force_ocr --languages \"en,de,fr\"\n   ```\n4. **Save parsed PDFs to a custom folder**:\n   ```bash\n   llamarker --directory /path/to/docs --save_pdfs --output /path/to/output\n   ```\n\n---\n\n## Output Structure\n\nAfter processing, **LlaMarker** organizes files as follows:\n\n- **`ParsedFiles`**\n  - Contains the generated Markdown files.\n  - **`pics`** \u2014 subfolder for extracted images.\n- **`PDFs`**\n  - Stores converted PDF files (if `--save_pdfs` is used).\n- **`OutDir`**\n  - Contains processed PDF files (used by the GUI).\n- **`logs`**\n  - Holds log files for each run (processing status, errors, etc.).\n\n---\n\n## Code Example\n\nFor local development, you can programmatically use **LlaMarker**:\n\n```python\nfrom llamarker import LlaMarker\n\nllamarker = LlaMarker(\n    input_dir=\"/path/to/documents\",\n    save_pdfs=True,\n    output_dir=\"/path/to/output\",\n    verbose=1\n)\n\n# Process all documents in the specified directory\nllamarker.process_documents()\n\n# Generate summary info\nresults = llamarker.generate_summary()\nfor file, page_count in results:\n    print(f\"{file}: {page_count} pages\")\n\n# Generate analysis plots\nllamarker.plot_analysis(llamarker.parent_dir)\n```\n\n---\n\n## Contributing\n\nContributions are welcome! Feel free to open an issue or submit a pull request. Let\u2019s make **LlaMarker** even more powerful\u2014together. \ud83e\udd1d\n\n---\n\n## License\n\nThis project references the [Marker](https://github.com/VikParuchuri/marker) repository, which comes with its own license. Please review the Marker repo for licensing restrictions and guidelines.\n\n\u00a9 2025 Revan Kumar Dhanasekaran. Released under the GPLv3 License.\n\n---\n\n## Acknowledgments\n\n- **Huge thanks** to the [Marker](https://github.com/VikParuchuri/marker) project for providing an excellent foundation for parsing.\n- **Special thanks** to the open-source community for continuous support and contributions.\n\n---\n\n<p align=\"center\">\n  <b>Happy Parsing!</b> \ud83c\udf1f\n</p>\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "A universal GenAI-based local parser for complex documents of all types.",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/RevanKumarD/LlaMarker",
        "Repository": "https://github.com/RevanKumarD/LlaMarker"
    },
    "split_keywords": [
        "markdown",
        " document parsing",
        " llama",
        " ai",
        " local parser",
        " genai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84bddcb1e4cbc117580bc6dca0fe5b38c0c22875625e0ad7ddbd27e91901cd09",
                "md5": "1d41f1f498dec799c0b4ce2ddd577ec8",
                "sha256": "8ac13125442c62872f442e50b9b140395f3bab8d2565d99f75559555fba22179"
            },
            "downloads": -1,
            "filename": "llamarker-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1d41f1f498dec799c0b4ce2ddd577ec8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 85179,
            "upload_time": "2025-01-13T13:37:12",
            "upload_time_iso_8601": "2025-01-13T13:37:12.613064Z",
            "url": "https://files.pythonhosted.org/packages/84/bd/dcb1e4cbc117580bc6dca0fe5b38c0c22875625e0ad7ddbd27e91901cd09/llamarker-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "05760fd24ad1ec4c159d0008e6b203709646d55152118da370e715fd0a79e2ff",
                "md5": "0f581277eb1cd3d3252e460b6cb61d0b",
                "sha256": "b629dd82606ab14654b4007bbf51cc395c6adb0a4d6b1d9152f0758c0ef05925"
            },
            "downloads": -1,
            "filename": "llamarker-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0f581277eb1cd3d3252e460b6cb61d0b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 84494,
            "upload_time": "2025-01-13T13:37:13",
            "upload_time_iso_8601": "2025-01-13T13:37:13.939528Z",
            "url": "https://files.pythonhosted.org/packages/05/76/0fd24ad1ec4c159d0008e6b203709646d55152118da370e715fd0a79e2ff/llamarker-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-13 13:37:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RevanKumarD",
    "github_project": "LlaMarker",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "llamarker"
}
        
Elapsed time: 0.59101s