Name | llm-azure JSON |
Version |
1.0
JSON |
| download |
home_page | None |
Summary | Azure plugin for LLM using the AzureOpenAI class |
upload_time | 2025-02-07 12:23:41 |
maintainer | None |
docs_url | None |
author | Fabian Geiger |
requires_python | None |
license | Apache-2.0 |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# llm-azure
[](https://pypi.org/project/llm-azure/)
[](https://github.com/fabge/llm-azure/releases)
[](https://github.com/fabge/llm-azure/blob/main/LICENSE)
LLM access to the Azure OpenAI SDK
## Installation
Install this plugin in the same environment as [LLM](https://llm.datasette.io/).
```bash
llm install llm-azure
```
## Usage
First, set an API key for Azure OpenAI:
```bash
llm keys set azure
# Paste key here
```
To add the `gpt-4-32k` chat model, and embedding model `text-embedding-3-small` deployed in your Azure Subscription, add this to your `azure/config.yaml` file:
```yaml
- model_id: gpt-4-32k
model_name: gpt-4-32k
api_base: https://your_deployment.openai.azure.com/
api_version: '2023-05-15'
- model_id: text-embedding-3-small
embedding_model: true
model_name: text-embedding-3-small
api_base: https://your_deployment.openai.azure.com/
api_version: '2023-05-14'
```
the configuration file should be in the `azure` directory in the config of your `llm` installation.
Run this command to find the directory in which this file should be created:
```bash
dirname "$(llm logs path)"
```
The `model_id` is the name LLM will use for the model. The `model_name` is the name which needs to be passed to the API - this might differ from the `model_id`, especially if `model_id` could potentially clash with other installed models.
Raw data
{
"_id": null,
"home_page": null,
"name": "llm-azure",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Fabian Geiger",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/3d/43/0fd749c58fbe7cfc8e28ee6489018464d717dc89895faa19382b758a28e0/llm_azure-1.0.tar.gz",
"platform": null,
"description": "# llm-azure\n\n[](https://pypi.org/project/llm-azure/)\n[](https://github.com/fabge/llm-azure/releases)\n[](https://github.com/fabge/llm-azure/blob/main/LICENSE)\n\nLLM access to the Azure OpenAI SDK\n\n## Installation\n\nInstall this plugin in the same environment as [LLM](https://llm.datasette.io/).\n\n```bash\nllm install llm-azure\n```\n\n## Usage\n\nFirst, set an API key for Azure OpenAI:\n\n```bash\nllm keys set azure\n# Paste key here\n```\n\nTo add the `gpt-4-32k` chat model, and embedding model `text-embedding-3-small` deployed in your Azure Subscription, add this to your `azure/config.yaml` file:\n\n```yaml\n- model_id: gpt-4-32k\n model_name: gpt-4-32k\n api_base: https://your_deployment.openai.azure.com/\n api_version: '2023-05-15'\n\n- model_id: text-embedding-3-small\n embedding_model: true\n model_name: text-embedding-3-small\n api_base: https://your_deployment.openai.azure.com/\n api_version: '2023-05-14'\n```\n\nthe configuration file should be in the `azure` directory in the config of your `llm` installation.\nRun this command to find the directory in which this file should be created:\n\n```bash\ndirname \"$(llm logs path)\"\n```\n\nThe `model_id` is the name LLM will use for the model. The `model_name` is the name which needs to be passed to the API - this might differ from the `model_id`, especially if `model_id` could potentially clash with other installed models.\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Azure plugin for LLM using the AzureOpenAI class",
"version": "1.0",
"project_urls": {
"CI": "https://github.com/fabge/llm-azure/actions",
"Changelog": "https://github.com/fabge/llm-azure/releases",
"Homepage": "https://github.com/fabge/llm-azure",
"Issues": "https://github.com/fabge/llm-azure/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9145d360b38775036220ea6dcb96c5d76e9480e26dc89ac7b4681b9821f0c64b",
"md5": "429c20ab66daaf471b696c2cf566f12a",
"sha256": "ade507add326b76cb6b777cc4c9fb2602a35271d4bd23304ecd6482375828578"
},
"downloads": -1,
"filename": "llm_azure-1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "429c20ab66daaf471b696c2cf566f12a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 7426,
"upload_time": "2025-02-07T12:23:36",
"upload_time_iso_8601": "2025-02-07T12:23:36.588475Z",
"url": "https://files.pythonhosted.org/packages/91/45/d360b38775036220ea6dcb96c5d76e9480e26dc89ac7b4681b9821f0c64b/llm_azure-1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3d430fd749c58fbe7cfc8e28ee6489018464d717dc89895faa19382b758a28e0",
"md5": "9953954fa527e8a81e8793147516f68d",
"sha256": "a57ff3a256924bb1ee64b4a01189456791fdbc2566d59b67ea750b3324e9d516"
},
"downloads": -1,
"filename": "llm_azure-1.0.tar.gz",
"has_sig": false,
"md5_digest": "9953954fa527e8a81e8793147516f68d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6925,
"upload_time": "2025-02-07T12:23:41",
"upload_time_iso_8601": "2025-02-07T12:23:41.554163Z",
"url": "https://files.pythonhosted.org/packages/3d/43/0fd749c58fbe7cfc8e28ee6489018464d717dc89895faa19382b758a28e0/llm_azure-1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-07 12:23:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fabge",
"github_project": "llm-azure",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "llm-azure"
}