Name | llm-council JSON |
Version |
0.1.3
JSON |
| download |
home_page | None |
Summary | Use LLM to generate and execute commands in your shell |
upload_time | 2025-02-01 00:55:27 |
maintainer | None |
docs_url | None |
author | Simon Willison |
requires_python | None |
license | MIT |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# llm-council
Get a council of LLMs to advise consult for you!
## Installation
This plugin should be installed in the same environment as [LLM](https://llm.datasette.io/).
```bash
llm install llm-council
```

### Supported models/providers
The models themselves are fixed as of now with:
- `openai`: `gpt-4o`
- `anthropic`: `clause-3.5-sonnet`
- `google`: `gemini-1.5-flash-latest`
The necessary `llm plugins` are already installed. But you still need to set the keys
```bash
llm keys set openai
llm keys set claude
llm keys set gemini
```
## Usage
I usually run every query on all LLMs just to see what they have to say. And I love the llm library. You can now assemble your own council of advisors by simply running `llm council` like this:
```bash
llm council 'whats the california traffic law around double white lines?'
```
By default, it uses `openai` and `anthropic`. But you can specify the providers by:
```bash
llm council -p openai -p anthropic 'tell me a joke'
```
Press Q or Ctrl + C to exit.
## The system prompt
This is the prompt used by this tool:
> Keep your answers brief and to the point.
Feel free to modify it by passing the `--system` arg.
## Development
To set up this plugin locally, first checkout the code. Then create a new virtual environment:
```bash
cd llm-council
uv venv
source .venv/bin/activate
uv pip install -r pyproject.toml
```
Now install the plugin with:
```bash
llm install -e .
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llm-council",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Simon Willison",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/ae/27/7757ef6d22394088bf17491299d7c65831300586b15e2b58d67777d7b1a7/llm_council-0.1.3.tar.gz",
"platform": null,
"description": "# llm-council\n\nGet a council of LLMs to advise consult for you!\n\n## Installation\n\nThis plugin should be installed in the same environment as [LLM](https://llm.datasette.io/).\n```bash\nllm install llm-council\n```\n\n\n\n### Supported models/providers\nThe models themselves are fixed as of now with:\n- `openai`: `gpt-4o`\n- `anthropic`: `clause-3.5-sonnet`\n- `google`: `gemini-1.5-flash-latest`\n\nThe necessary `llm plugins` are already installed. But you still need to set the keys\n```bash\nllm keys set openai\nllm keys set claude\nllm keys set gemini\n```\n\n## Usage\n\nI usually run every query on all LLMs just to see what they have to say. And I love the llm library. You can now assemble your own council of advisors by simply running `llm council` like this:\n\n```bash\nllm council 'whats the california traffic law around double white lines?'\n```\n\nBy default, it uses `openai` and `anthropic`. But you can specify the providers by:\n\n```bash\nllm council -p openai -p anthropic 'tell me a joke'\n```\nPress Q or Ctrl + C to exit.\n\n## The system prompt\n\nThis is the prompt used by this tool:\n\n> Keep your answers brief and to the point.\n\nFeel free to modify it by passing the `--system` arg.\n\n## Development\n\nTo set up this plugin locally, first checkout the code. Then create a new virtual environment:\n```bash\ncd llm-council\nuv venv\nsource .venv/bin/activate\n\nuv pip install -r pyproject.toml\n```\nNow install the plugin with:\n```bash\nllm install -e .\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Use LLM to generate and execute commands in your shell",
"version": "0.1.3",
"project_urls": {
"homepage": "https://github.com/nuwandavek/llm-council"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "e8ef830875ffab11f2e9e85d4cc24f94d4642cc4d50dd26a906a6a68c6037b13",
"md5": "d8942d7b1537cfca9ef168dcf89ccf74",
"sha256": "80779eff9251cbef8f133021a6fd14846b518c77978559f26553f2cc3fd6c504"
},
"downloads": -1,
"filename": "llm_council-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d8942d7b1537cfca9ef168dcf89ccf74",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4468,
"upload_time": "2025-02-01T00:55:26",
"upload_time_iso_8601": "2025-02-01T00:55:26.205707Z",
"url": "https://files.pythonhosted.org/packages/e8/ef/830875ffab11f2e9e85d4cc24f94d4642cc4d50dd26a906a6a68c6037b13/llm_council-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ae277757ef6d22394088bf17491299d7c65831300586b15e2b58d67777d7b1a7",
"md5": "fda63b9daca5e8e27c9d7007c841d43b",
"sha256": "ac19699927432cdc297ada10f124082a3b45a5660aa7b6aa4409d393100406cd"
},
"downloads": -1,
"filename": "llm_council-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "fda63b9daca5e8e27c9d7007c841d43b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3964,
"upload_time": "2025-02-01T00:55:27",
"upload_time_iso_8601": "2025-02-01T00:55:27.756487Z",
"url": "https://files.pythonhosted.org/packages/ae/27/7757ef6d22394088bf17491299d7c65831300586b15e2b58d67777d7b1a7/llm_council-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-01 00:55:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nuwandavek",
"github_project": "llm-council",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "llm-council"
}