llm-document-analysis


Namellm-document-analysis JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA Python library for LLM-powered document analysis and processing
upload_time2025-02-08 17:23:15
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords llm document analysis nlp ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LLM Document Analysis

A Python library for LLM-powered document analysis and processing. This library provides a flexible and extensible framework for analyzing documents using Large Language Models.

## Features

- Document processing for various formats (PDF, Text, etc.)
- Integration with popular LLM providers
- Extensible processor architecture
- Built-in logging and error handling
- Async support for better performance

## Installation

You can install the package directly from PyPI:

```bash
pip install llm-document-analysis
```

For development installation with additional tools:

```bash
pip install llm-document-analysis[dev]
```

## Quick Start

```python
from llm_document_analysis import DocumentAnalyzer
from llm_document_analysis.processors import PDFProcessor

# Initialize the analyzer
analyzer = DocumentAnalyzer()

# Process a PDF document
processor = PDFProcessor("path/to/document.pdf")
result = analyzer.analyze(processor)

# Access the analysis results
print(result.summary)
print(result.key_points)
```

## Development

1. Clone the repository:
```bash
git clone https://github.com/Venere-Labs/llm-document-analysis.git
cd llm-document-analysis
```

2. Create a virtual environment:
```bash
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
```

3. Install development dependencies:
```bash
pip install -e ".[dev]"
```

4. Run tests:
```bash
pytest
```

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Support

If you encounter any problems or have questions, please [open an issue](https://github.com/Venere-Labs/llm-document-analysis/issues) on GitHub. 

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llm-document-analysis",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "llm, document, analysis, nlp, ai",
    "author": null,
    "author_email": "Gianluca Mazza <gianluca@venerelabs.com>",
    "download_url": "https://files.pythonhosted.org/packages/7d/52/13b73788e3fdf48e8d57c5ff3c8ce0214182acecd470ae475fe9b0e2b955/llm_document_analysis-0.1.1.tar.gz",
    "platform": null,
    "description": "# LLM Document Analysis\n\nA Python library for LLM-powered document analysis and processing. This library provides a flexible and extensible framework for analyzing documents using Large Language Models.\n\n## Features\n\n- Document processing for various formats (PDF, Text, etc.)\n- Integration with popular LLM providers\n- Extensible processor architecture\n- Built-in logging and error handling\n- Async support for better performance\n\n## Installation\n\nYou can install the package directly from PyPI:\n\n```bash\npip install llm-document-analysis\n```\n\nFor development installation with additional tools:\n\n```bash\npip install llm-document-analysis[dev]\n```\n\n## Quick Start\n\n```python\nfrom llm_document_analysis import DocumentAnalyzer\nfrom llm_document_analysis.processors import PDFProcessor\n\n# Initialize the analyzer\nanalyzer = DocumentAnalyzer()\n\n# Process a PDF document\nprocessor = PDFProcessor(\"path/to/document.pdf\")\nresult = analyzer.analyze(processor)\n\n# Access the analysis results\nprint(result.summary)\nprint(result.key_points)\n```\n\n## Development\n\n1. Clone the repository:\n```bash\ngit clone https://github.com/Venere-Labs/llm-document-analysis.git\ncd llm-document-analysis\n```\n\n2. Create a virtual environment:\n```bash\npython -m venv .venv\nsource .venv/bin/activate  # On Windows: .venv\\Scripts\\activate\n```\n\n3. Install development dependencies:\n```bash\npip install -e \".[dev]\"\n```\n\n4. Run tests:\n```bash\npytest\n```\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Support\n\nIf you encounter any problems or have questions, please [open an issue](https://github.com/Venere-Labs/llm-document-analysis/issues) on GitHub. \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python library for LLM-powered document analysis and processing",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/Venere-Labs/llm-document-analysis/issues",
        "Homepage": "https://github.com/Venere-Labs/llm-document-analysis",
        "Repository": "https://github.com/Venere-Labs/llm-document-analysis.git"
    },
    "split_keywords": [
        "llm",
        " document",
        " analysis",
        " nlp",
        " ai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9457d22dce15979c434bd4d258f60035e96882576b0aaba1a5741fddab9bdc65",
                "md5": "5c1496120cea2d19d5df970364069d3e",
                "sha256": "4a4713d743f6e02a17c457aa4c67b2c13ec54ace62a778bd0d8a51dd1297c57b"
            },
            "downloads": -1,
            "filename": "llm_document_analysis-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5c1496120cea2d19d5df970364069d3e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 11399,
            "upload_time": "2025-02-08T17:23:14",
            "upload_time_iso_8601": "2025-02-08T17:23:14.262842Z",
            "url": "https://files.pythonhosted.org/packages/94/57/d22dce15979c434bd4d258f60035e96882576b0aaba1a5741fddab9bdc65/llm_document_analysis-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7d5213b73788e3fdf48e8d57c5ff3c8ce0214182acecd470ae475fe9b0e2b955",
                "md5": "b13a1a67010d1f60ecd47559107bf762",
                "sha256": "731b4145415b7b084fac19aa304db67d69138efa94108f59dd78627455f1f4d0"
            },
            "downloads": -1,
            "filename": "llm_document_analysis-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b13a1a67010d1f60ecd47559107bf762",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 16930,
            "upload_time": "2025-02-08T17:23:15",
            "upload_time_iso_8601": "2025-02-08T17:23:15.881547Z",
            "url": "https://files.pythonhosted.org/packages/7d/52/13b73788e3fdf48e8d57c5ff3c8ce0214182acecd470ae475fe9b0e2b955/llm_document_analysis-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-08 17:23:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Venere-Labs",
    "github_project": "llm-document-analysis",
    "github_not_found": true,
    "lcname": "llm-document-analysis"
}
        
Elapsed time: 0.42401s