llm-gemini


Namellm-gemini JSON
Version 0.4.2 PyPI version JSON
download
home_pageNone
SummaryLLM plugin to access Google's Gemini family of models
upload_time2024-11-22 00:44:28
maintainerNone
docs_urlNone
authorSimon Willison
requires_pythonNone
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # llm-gemini

[![PyPI](https://img.shields.io/pypi/v/llm-gemini.svg)](https://pypi.org/project/llm-gemini/)
[![Changelog](https://img.shields.io/github/v/release/simonw/llm-gemini?include_prereleases&label=changelog)](https://github.com/simonw/llm-gemini/releases)
[![Tests](https://github.com/simonw/llm-gemini/workflows/Test/badge.svg)](https://github.com/simonw/llm-gemini/actions?query=workflow%3ATest)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/llm-gemini/blob/main/LICENSE)

API access to Google's Gemini models

## Installation

Install this plugin in the same environment as [LLM](https://llm.datasette.io/).
```bash
llm install llm-gemini
```
## Usage

Configure the model by setting a key called "gemini" to your [API key](https://aistudio.google.com/app/apikey):
```bash
llm keys set gemini
```
```
<paste key here>
```
You can also set the API key by assigning it to the environment variable `LLM_GEMINI_KEY`.

Now run the model using `-m gemini-1.5-pro-latest`, for example:

```bash
llm -m gemini-1.5-pro-latest "A joke about a pelican and a walrus"
```

> A pelican walks into a seafood restaurant with a huge fish hanging out of its beak.  The walrus, sitting at the bar, eyes it enviously.
>
> "Hey," the walrus says, "That looks delicious! What kind of fish is that?"
>
> The pelican taps its beak thoughtfully. "I believe," it says, "it's a billfish."

Other models are:

- `gemini-1.5-flash-latest`
- `gemini-1.5-flash-8b-latest` - the least expensive
- `gemini-exp-1114` - recent experimental #1
- `gemini-exp-1121` - recent experimental #2

### Images, audio and video

Gemini models are multi-modal. You can provide images, audio or video files as input like this:

```bash
llm -m gemini-1.5-flash-latest 'extract text' -a image.jpg
```
Or with a URL:
```bash
llm -m gemini-1.5-flash-8b-latest 'describe image' \
  -a https://static.simonwillison.net/static/2024/pelicans.jpg
```
Audio works too:

```bash
llm -m gemini-1.5-pro-latest 'transcribe audio' -a audio.mp3
```

And video:

```bash
llm -m gemini-1.5-pro-latest 'describe what happens' -a video.mp4
```
The Gemini prompting guide includes [extensive advice](https://ai.google.dev/gemini-api/docs/file-prompting-strategies) on multi-modal prompting.

### JSON output

Use `-o json_object 1` to force the output to be JSON:

```bash
llm -m gemini-1.5-flash-latest -o json_object 1 \
  '3 largest cities in California, list of {"name": "..."}'
```
Outputs:
```json
{"cities": [{"name": "Los Angeles"}, {"name": "San Diego"}, {"name": "San Jose"}]}
```

### Code execution

Gemini models can [write and execute code](https://ai.google.dev/gemini-api/docs/code-execution) - they can decide to write Python code, execute it in a secure sandbox and use the result as part of their response.

To enable this feature, use `-o code_execution 1`:

```bash
llm -m gemini-1.5-pro-latest -o code_execution 1 \
'use python to calculate (factorial of 13) * 3'
```

### Chat

To chat interactively with the model, run `llm chat`:

```bash
llm chat -m gemini-1.5-pro-latest
```

## Embeddings

The plugin also adds support for the `text-embedding-004` embedding model.

Run that against a single string like this:
```bash
llm embed -m text-embedding-004 -c 'hello world'
```
This returns a JSON array of 768 numbers.

This command will embed every `README.md` file in child directories of the current directory and store the results in a SQLite database called `embed.db` in a collection called `readmes`:

```bash
llm embed-multi readmes --files . '*/README.md' -d embed.db -m text-embedding-004
```
You can then run similarity searches against that collection like this:
```bash
llm similar readmes -c 'upload csvs to stuff' -d embed.db
```

See the [LLM embeddings documentation](https://llm.datasette.io/en/stable/embeddings/cli.html) for further details.

## Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment:
```bash
cd llm-gemini
python3 -m venv venv
source venv/bin/activate
```
Now install the dependencies and test dependencies:
```bash
llm install -e '.[test]'
```
To run the tests:
```bash
pytest
```

This project uses [pytest-recording](https://github.com/kiwicom/pytest-recording) to record Gemini API responses for the tests.

If you add a new test that calls the API you can capture the API response like this:
```bash
PYTEST_GEMINI_API_KEY="$(llm keys get gemini)" pytest --record-mode once
```
You will need to have stored a valid Gemini API key using this command first:
```bash
llm keys set gemini
# Paste key here
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llm-gemini",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Simon Willison",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/73/ac/faec3146f03514312e166dcedf69b895713a8d41e558e1527b418a568614/llm_gemini-0.4.2.tar.gz",
    "platform": null,
    "description": "# llm-gemini\n\n[![PyPI](https://img.shields.io/pypi/v/llm-gemini.svg)](https://pypi.org/project/llm-gemini/)\n[![Changelog](https://img.shields.io/github/v/release/simonw/llm-gemini?include_prereleases&label=changelog)](https://github.com/simonw/llm-gemini/releases)\n[![Tests](https://github.com/simonw/llm-gemini/workflows/Test/badge.svg)](https://github.com/simonw/llm-gemini/actions?query=workflow%3ATest)\n[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/llm-gemini/blob/main/LICENSE)\n\nAPI access to Google's Gemini models\n\n## Installation\n\nInstall this plugin in the same environment as [LLM](https://llm.datasette.io/).\n```bash\nllm install llm-gemini\n```\n## Usage\n\nConfigure the model by setting a key called \"gemini\" to your [API key](https://aistudio.google.com/app/apikey):\n```bash\nllm keys set gemini\n```\n```\n<paste key here>\n```\nYou can also set the API key by assigning it to the environment variable `LLM_GEMINI_KEY`.\n\nNow run the model using `-m gemini-1.5-pro-latest`, for example:\n\n```bash\nllm -m gemini-1.5-pro-latest \"A joke about a pelican and a walrus\"\n```\n\n> A pelican walks into a seafood restaurant with a huge fish hanging out of its beak.  The walrus, sitting at the bar, eyes it enviously.\n>\n> \"Hey,\" the walrus says, \"That looks delicious! What kind of fish is that?\"\n>\n> The pelican taps its beak thoughtfully. \"I believe,\" it says, \"it's a billfish.\"\n\nOther models are:\n\n- `gemini-1.5-flash-latest`\n- `gemini-1.5-flash-8b-latest` - the least expensive\n- `gemini-exp-1114` - recent experimental #1\n- `gemini-exp-1121` - recent experimental #2\n\n### Images, audio and video\n\nGemini models are multi-modal. You can provide images, audio or video files as input like this:\n\n```bash\nllm -m gemini-1.5-flash-latest 'extract text' -a image.jpg\n```\nOr with a URL:\n```bash\nllm -m gemini-1.5-flash-8b-latest 'describe image' \\\n  -a https://static.simonwillison.net/static/2024/pelicans.jpg\n```\nAudio works too:\n\n```bash\nllm -m gemini-1.5-pro-latest 'transcribe audio' -a audio.mp3\n```\n\nAnd video:\n\n```bash\nllm -m gemini-1.5-pro-latest 'describe what happens' -a video.mp4\n```\nThe Gemini prompting guide includes [extensive advice](https://ai.google.dev/gemini-api/docs/file-prompting-strategies) on multi-modal prompting.\n\n### JSON output\n\nUse `-o json_object 1` to force the output to be JSON:\n\n```bash\nllm -m gemini-1.5-flash-latest -o json_object 1 \\\n  '3 largest cities in California, list of {\"name\": \"...\"}'\n```\nOutputs:\n```json\n{\"cities\": [{\"name\": \"Los Angeles\"}, {\"name\": \"San Diego\"}, {\"name\": \"San Jose\"}]}\n```\n\n### Code execution\n\nGemini models can [write and execute code](https://ai.google.dev/gemini-api/docs/code-execution) - they can decide to write Python code, execute it in a secure sandbox and use the result as part of their response.\n\nTo enable this feature, use `-o code_execution 1`:\n\n```bash\nllm -m gemini-1.5-pro-latest -o code_execution 1 \\\n'use python to calculate (factorial of 13) * 3'\n```\n\n### Chat\n\nTo chat interactively with the model, run `llm chat`:\n\n```bash\nllm chat -m gemini-1.5-pro-latest\n```\n\n## Embeddings\n\nThe plugin also adds support for the `text-embedding-004` embedding model.\n\nRun that against a single string like this:\n```bash\nllm embed -m text-embedding-004 -c 'hello world'\n```\nThis returns a JSON array of 768 numbers.\n\nThis command will embed every `README.md` file in child directories of the current directory and store the results in a SQLite database called `embed.db` in a collection called `readmes`:\n\n```bash\nllm embed-multi readmes --files . '*/README.md' -d embed.db -m text-embedding-004\n```\nYou can then run similarity searches against that collection like this:\n```bash\nllm similar readmes -c 'upload csvs to stuff' -d embed.db\n```\n\nSee the [LLM embeddings documentation](https://llm.datasette.io/en/stable/embeddings/cli.html) for further details.\n\n## Development\n\nTo set up this plugin locally, first checkout the code. Then create a new virtual environment:\n```bash\ncd llm-gemini\npython3 -m venv venv\nsource venv/bin/activate\n```\nNow install the dependencies and test dependencies:\n```bash\nllm install -e '.[test]'\n```\nTo run the tests:\n```bash\npytest\n```\n\nThis project uses [pytest-recording](https://github.com/kiwicom/pytest-recording) to record Gemini API responses for the tests.\n\nIf you add a new test that calls the API you can capture the API response like this:\n```bash\nPYTEST_GEMINI_API_KEY=\"$(llm keys get gemini)\" pytest --record-mode once\n```\nYou will need to have stored a valid Gemini API key using this command first:\n```bash\nllm keys set gemini\n# Paste key here\n```\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "LLM plugin to access Google's Gemini family of models",
    "version": "0.4.2",
    "project_urls": {
        "CI": "https://github.com/simonw/llm-gemini/actions",
        "Changelog": "https://github.com/simonw/llm-gemini/releases",
        "Homepage": "https://github.com/simonw/llm-gemini",
        "Issues": "https://github.com/simonw/llm-gemini/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "295e2702682697ba42a1ff40a6f51059e9993061bd9902586159a4def9ef5011",
                "md5": "729d18fa97b1a35e7189fae2a0563148",
                "sha256": "a25377f9fc25e027038eb30e9642e974aea5368e79626d3d94e2479518cf6065"
            },
            "downloads": -1,
            "filename": "llm_gemini-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "729d18fa97b1a35e7189fae2a0563148",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 10468,
            "upload_time": "2024-11-22T00:44:27",
            "upload_time_iso_8601": "2024-11-22T00:44:27.217573Z",
            "url": "https://files.pythonhosted.org/packages/29/5e/2702682697ba42a1ff40a6f51059e9993061bd9902586159a4def9ef5011/llm_gemini-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "73acfaec3146f03514312e166dcedf69b895713a8d41e558e1527b418a568614",
                "md5": "8b1d1dfa26e6b243d6b2e8afa23ed90f",
                "sha256": "e031829734d2f59b9731d0e1b578bd9eda803c50290c22a83f2f60c9d1a3e07b"
            },
            "downloads": -1,
            "filename": "llm_gemini-0.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "8b1d1dfa26e6b243d6b2e8afa23ed90f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10292,
            "upload_time": "2024-11-22T00:44:28",
            "upload_time_iso_8601": "2024-11-22T00:44:28.671085Z",
            "url": "https://files.pythonhosted.org/packages/73/ac/faec3146f03514312e166dcedf69b895713a8d41e558e1527b418a568614/llm_gemini-0.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-22 00:44:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "simonw",
    "github_project": "llm-gemini",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "llm-gemini"
}
        
Elapsed time: 0.48667s