Name | llm-llamafile JSON |
Version |
0.1
JSON |
| download |
home_page | None |
Summary | Access llamafile localhost models via LLM |
upload_time | 2024-04-22 04:11:25 |
maintainer | None |
docs_url | None |
author | Simon Willison |
requires_python | None |
license | Apache-2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# llm-llamafile
[![PyPI](https://img.shields.io/pypi/v/llm-llamafile.svg)](https://pypi.org/project/llm-llamafile/)
[![Changelog](https://img.shields.io/github/v/release/simonw/llm-llamafile?include_prereleases&label=changelog)](https://github.com/simonw/llm-llamafile/releases)
[![Tests](https://github.com/simonw/llm-llamafile/actions/workflows/test.yml/badge.svg)](https://github.com/simonw/llm-llamafile/actions/workflows/test.yml)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/llm-llamafile/blob/main/LICENSE)
Access llamafile localhost models via LLM
## Installation
Install this plugin in the same environment as [LLM](https://llm.datasette.io/).
```bash
llm install llm-llamafile
```
## Usage
Make sure you have a `llamafile` running on `localhost`, serving an OpenAI compatible API endpoint on port 8080.
You can then use `llm` to interact with that model like so:
```bash
llm -m llamafile "3 neat characteristics of a pelican"
```
## Development
To set up this plugin locally, first checkout the code. Then create a new virtual environment:
```bash
cd llm-llamafile
python3 -m venv venv
source venv/bin/activate
```
Now install the dependencies and test dependencies:
```bash
llm install -e '.[test]'
```
To run the tests:
```bash
pytest
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llm-llamafile",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Simon Willison",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/cb/91/1b7e844fddccd7e1b03ffecb2bfd70bb2eca0383d19604df21015cded932/llm_llamafile-0.1.tar.gz",
"platform": null,
"description": "# llm-llamafile\n\n[![PyPI](https://img.shields.io/pypi/v/llm-llamafile.svg)](https://pypi.org/project/llm-llamafile/)\n[![Changelog](https://img.shields.io/github/v/release/simonw/llm-llamafile?include_prereleases&label=changelog)](https://github.com/simonw/llm-llamafile/releases)\n[![Tests](https://github.com/simonw/llm-llamafile/actions/workflows/test.yml/badge.svg)](https://github.com/simonw/llm-llamafile/actions/workflows/test.yml)\n[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/llm-llamafile/blob/main/LICENSE)\n\nAccess llamafile localhost models via LLM\n\n## Installation\n\nInstall this plugin in the same environment as [LLM](https://llm.datasette.io/).\n```bash\nllm install llm-llamafile\n```\n## Usage\n\nMake sure you have a `llamafile` running on `localhost`, serving an OpenAI compatible API endpoint on port 8080.\n\nYou can then use `llm` to interact with that model like so:\n\n```bash\nllm -m llamafile \"3 neat characteristics of a pelican\"\n```\n\n## Development\n\nTo set up this plugin locally, first checkout the code. Then create a new virtual environment:\n```bash\ncd llm-llamafile\npython3 -m venv venv\nsource venv/bin/activate\n```\nNow install the dependencies and test dependencies:\n```bash\nllm install -e '.[test]'\n```\nTo run the tests:\n```bash\npytest\n```\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Access llamafile localhost models via LLM",
"version": "0.1",
"project_urls": {
"CI": "https://github.com/simonw/llm-llamafile/actions",
"Changelog": "https://github.com/simonw/llm-llamafile/releases",
"Homepage": "https://github.com/simonw/llm-llamafile",
"Issues": "https://github.com/simonw/llm-llamafile/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "11cd500b8c2ecf640ca13178ceebfb1de6576b4ee642022b7c41634e4dde0a44",
"md5": "6ceb7f3aa91e133f80149e76c6ca99c8",
"sha256": "85feab4b87c24f060a920101c1700a7fb00ea8b9b6b0ee9bf423c8e83286e5e2"
},
"downloads": -1,
"filename": "llm_llamafile-0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6ceb7f3aa91e133f80149e76c6ca99c8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6541,
"upload_time": "2024-04-22T04:11:24",
"upload_time_iso_8601": "2024-04-22T04:11:24.413826Z",
"url": "https://files.pythonhosted.org/packages/11/cd/500b8c2ecf640ca13178ceebfb1de6576b4ee642022b7c41634e4dde0a44/llm_llamafile-0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cb911b7e844fddccd7e1b03ffecb2bfd70bb2eca0383d19604df21015cded932",
"md5": "e2a236b41fedf564a67864789b5bbcf8",
"sha256": "e7fee71cac12f1b3230b47f1aa15e8872c8efd764ac886a90a20ab11e72e7549"
},
"downloads": -1,
"filename": "llm_llamafile-0.1.tar.gz",
"has_sig": false,
"md5_digest": "e2a236b41fedf564a67864789b5bbcf8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6210,
"upload_time": "2024-04-22T04:11:25",
"upload_time_iso_8601": "2024-04-22T04:11:25.793390Z",
"url": "https://files.pythonhosted.org/packages/cb/91/1b7e844fddccd7e1b03ffecb2bfd70bb2eca0383d19604df21015cded932/llm_llamafile-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-22 04:11:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "simonw",
"github_project": "llm-llamafile",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "llm-llamafile"
}