llmexec


Namellmexec JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/Bam-Corp/llmexec
SummaryExecute LLM-Generated Python Code Automatically
upload_time2024-06-14 04:20:30
maintainerNone
docs_urlNone
authorBam Corp
requires_python>=3.7
licenseNone
keywords llmexec code execution ai-generated code
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # llmexec: Execute LLM-Generated Python Code

`llmexec` is a Python library that allows you to automatically execute python code snippets generated by large language models (LLMs). It's useful for projects that require automated code generation and execution and is a drop-in replacement for the python `exec()` function.

## Installation

```bash
pip install llmexec
```

## Usage

```python
from llmexec import llmexec

# LLM-generated code
llm_output = """
# Generate random data plot using matplotlib
import matplotlib.pyplot as plt
import numpy as np

x = np.random.rand(10)  # 10 random x values
y = np.random.rand(10)  # 10 random y values

fig, ax = plt.subplots()
ax.scatter(x, y)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_title('Random Data Plot')
plt.show()
"""

# Execute the LLM-generated code
llmexec(llm_output)
```

`llmexec` will automatically parse and execute the LLM-generated code snippet, displaying a random data plot using `matplotlib`.

## Features

- Automatically execute LLM-generated code snippets
- Parses out code from LLM outputs
- Trusted execution environment using `restrictedpython`
- Detailed logs and execution status
- Timeout and memory limits to prevent abuse

## License

[MIT License](https://github.com/your-username/llmexec/blob/main/LICENSE)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Bam-Corp/llmexec",
    "name": "llmexec",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "llmexec, code execution, ai-generated code",
    "author": "Bam Corp",
    "author_email": "spencer@bam.bot",
    "download_url": "https://files.pythonhosted.org/packages/7f/31/8614c485bfec99951702e97d6155205cb36cfb907746e440728e77c2e96d/llmexec-0.1.1.tar.gz",
    "platform": null,
    "description": "# llmexec: Execute LLM-Generated Python Code\n\n`llmexec` is a Python library that allows you to automatically execute python code snippets generated by large language models (LLMs). It's useful for projects that require automated code generation and execution and is a drop-in replacement for the python `exec()` function.\n\n## Installation\n\n```bash\npip install llmexec\n```\n\n## Usage\n\n```python\nfrom llmexec import llmexec\n\n# LLM-generated code\nllm_output = \"\"\"\n# Generate random data plot using matplotlib\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nx = np.random.rand(10)  # 10 random x values\ny = np.random.rand(10)  # 10 random y values\n\nfig, ax = plt.subplots()\nax.scatter(x, y)\nax.set_xlabel('X')\nax.set_ylabel('Y')\nax.set_title('Random Data Plot')\nplt.show()\n\"\"\"\n\n# Execute the LLM-generated code\nllmexec(llm_output)\n```\n\n`llmexec` will automatically parse and execute the LLM-generated code snippet, displaying a random data plot using `matplotlib`.\n\n## Features\n\n- Automatically execute LLM-generated code snippets\n- Parses out code from LLM outputs\n- Trusted execution environment using `restrictedpython`\n- Detailed logs and execution status\n- Timeout and memory limits to prevent abuse\n\n## License\n\n[MIT License](https://github.com/your-username/llmexec/blob/main/LICENSE)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Execute LLM-Generated Python Code Automatically",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/Bam-Corp/llmexec/issues",
        "Homepage": "https://github.com/Bam-Corp/llmexec",
        "Source Code": "https://github.com/Bam-Corp/llmexec"
    },
    "split_keywords": [
        "llmexec",
        " code execution",
        " ai-generated code"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ae3ce9c9d694b1720b570cdb48a862cea4c35e1c09615689cd58305bb7f3ffba",
                "md5": "0a55637644eac6068d6bb7b73357e473",
                "sha256": "14f941f22ef4561115f085b24aba6326d3be3fd44e16861e6293b76c25ab0801"
            },
            "downloads": -1,
            "filename": "llmexec-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0a55637644eac6068d6bb7b73357e473",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5472,
            "upload_time": "2024-06-14T04:20:29",
            "upload_time_iso_8601": "2024-06-14T04:20:29.535633Z",
            "url": "https://files.pythonhosted.org/packages/ae/3c/e9c9d694b1720b570cdb48a862cea4c35e1c09615689cd58305bb7f3ffba/llmexec-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7f318614c485bfec99951702e97d6155205cb36cfb907746e440728e77c2e96d",
                "md5": "3ea42fb2682e9573afcfdc25a226da2f",
                "sha256": "cf9c2835cff65f01d83e534c39e557d6b6e70d86788e3db55f9d8bf4f99ee44f"
            },
            "downloads": -1,
            "filename": "llmexec-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3ea42fb2682e9573afcfdc25a226da2f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 6586,
            "upload_time": "2024-06-14T04:20:30",
            "upload_time_iso_8601": "2024-06-14T04:20:30.789003Z",
            "url": "https://files.pythonhosted.org/packages/7f/31/8614c485bfec99951702e97d6155205cb36cfb907746e440728e77c2e96d/llmexec-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-14 04:20:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Bam-Corp",
    "github_project": "llmexec",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "llmexec"
}
        
Elapsed time: 0.28930s