llwp


Namellwp JSON
Version 2.0.7 PyPI version JSON
download
home_pageNone
SummaryLLWP is a fast, efficient and easy solution for exploring and assigning spectra - relying on Loomis-Wood plots.
upload_time2024-11-18 12:09:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords llwp loomis-wood plots spectroscopy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LLWP - Luis' Loomis-Wood Program

LLWP allows you to efficiently and confidently assign (typically rotational or rovibrational) spectra by relying on Loomis-Wood plots.

A quickstart guide is given down below. For more information see its [website](https://llwp.astro.uni-koeln.de).

If you want to acknowledge LLWP, please cite the paper [LLWP - A new Loomis-Wood software at the example of Acetone-13C1](https://doi.org/10.1016/j.jms.2022.111674).


## Quickstart Guide

The preferred way to install LLWP is via Python's package manager pip.
Run the following command in a terminal to install LLWP:

```bash
pip install llwp
```

After installing LLWP via pip you can run it from any terminal by simply running

```bash
llwp
```

To see and assign your first series

1. open your spectrum and prediction files via drag and drop or *Files > Add Files*
2. specify the correct reference series in the *Reference Series* window
3. choose the fitfunction under *Fit > Choose Fit Function*
4. select the area around the experimental peak with the mouse to fit the data

### ASAP Mode

To start the [ASAP](https://doi.org/10.1016/j.jms.2015.02.014) mode of LLWP run

```bash
lasap
```

To see and assign your first cross-correlation peaks

1. open your spectrum, \*.egy, and \*.cat file via drag and drop or *Files > Add Files*
2. specify the correct energy levels in the *ASAP Settings* window
3. specify the correct unit conversion factor for the \*.cat file in the *Units Cat File* field (e.g. 3.335641e-05 for \*.cat file in MHz and \*.egy file in wavenumbers)
3. press *Calculate Cross Correlation*
3. choose the fitfunction under *Fit > Choose Fit Function*
4. select the area around the experimental peak with the mouse to fit the data

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llwp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "LLWP, Loomis-Wood Plots, Spectroscopy",
    "author": null,
    "author_email": "Luis Bonah <bonah@ph1.uni-koeln.de>",
    "download_url": "https://files.pythonhosted.org/packages/27/9f/51ace09c97ffded65139ffea258098d609a2125d8270345ed22157c56e6d/llwp-2.0.7.tar.gz",
    "platform": null,
    "description": "# LLWP - Luis' Loomis-Wood Program\r\n\r\nLLWP allows you to efficiently and confidently assign (typically rotational or rovibrational) spectra by relying on Loomis-Wood plots.\r\n\r\nA quickstart guide is given down below. For more information see its [website](https://llwp.astro.uni-koeln.de).\r\n\r\nIf you want to acknowledge LLWP, please cite the paper [LLWP - A new Loomis-Wood software at the example of Acetone-13C1](https://doi.org/10.1016/j.jms.2022.111674).\r\n\r\n\r\n## Quickstart Guide\r\n\r\nThe preferred way to install LLWP is via Python's package manager pip.\r\nRun the following command in a terminal to install LLWP:\r\n\r\n```bash\r\npip install llwp\r\n```\r\n\r\nAfter installing LLWP via pip you can run it from any terminal by simply running\r\n\r\n```bash\r\nllwp\r\n```\r\n\r\nTo see and assign your first series\r\n\r\n1. open your spectrum and prediction files via drag and drop or *Files > Add Files*\r\n2. specify the correct reference series in the *Reference Series* window\r\n3. choose the fitfunction under *Fit > Choose Fit Function*\r\n4. select the area around the experimental peak with the mouse to fit the data\r\n\r\n### ASAP Mode\r\n\r\nTo start the [ASAP](https://doi.org/10.1016/j.jms.2015.02.014) mode of LLWP run\r\n\r\n```bash\r\nlasap\r\n```\r\n\r\nTo see and assign your first cross-correlation peaks\r\n\r\n1. open your spectrum, \\*.egy, and \\*.cat file via drag and drop or *Files > Add Files*\r\n2. specify the correct energy levels in the *ASAP Settings* window\r\n3. specify the correct unit conversion factor for the \\*.cat file in the *Units Cat File* field (e.g. 3.335641e-05 for \\*.cat file in MHz and \\*.egy file in wavenumbers)\r\n3. press *Calculate Cross Correlation*\r\n3. choose the fitfunction under *Fit > Choose Fit Function*\r\n4. select the area around the experimental peak with the mouse to fit the data\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "LLWP is a fast, efficient and easy solution for exploring and assigning spectra - relying on Loomis-Wood plots.",
    "version": "2.0.7",
    "project_urls": {
        "Homepage": "https://llwp.astro.uni-koeln.de/"
    },
    "split_keywords": [
        "llwp",
        " loomis-wood plots",
        " spectroscopy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3591ff97aa79cc43395d8e34f30ffd6354e7a3f10fc91c7705ae233a2b6968f2",
                "md5": "c14c6d2452a76a2ca1ac6322e4da82aa",
                "sha256": "3f4dd91cc451500ada5df4a06960a313e9c9d73ec83cbe8379a16b3c410d8012"
            },
            "downloads": -1,
            "filename": "llwp-2.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c14c6d2452a76a2ca1ac6322e4da82aa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 72177,
            "upload_time": "2024-11-18T12:09:37",
            "upload_time_iso_8601": "2024-11-18T12:09:37.820671Z",
            "url": "https://files.pythonhosted.org/packages/35/91/ff97aa79cc43395d8e34f30ffd6354e7a3f10fc91c7705ae233a2b6968f2/llwp-2.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "279f51ace09c97ffded65139ffea258098d609a2125d8270345ed22157c56e6d",
                "md5": "470b1adbdef5a32717e14150272254b4",
                "sha256": "81448bc60e8e9bcecb8d8d33731a4de5531d9977d303b1a0b3b977f797737698"
            },
            "downloads": -1,
            "filename": "llwp-2.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "470b1adbdef5a32717e14150272254b4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 72303,
            "upload_time": "2024-11-18T12:09:39",
            "upload_time_iso_8601": "2024-11-18T12:09:39.592698Z",
            "url": "https://files.pythonhosted.org/packages/27/9f/51ace09c97ffded65139ffea258098d609a2125d8270345ed22157c56e6d/llwp-2.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 12:09:39",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llwp"
}
        
Elapsed time: 0.45420s