llwp


Namellwp JSON
Version 2.0.20 PyPI version JSON
download
home_pageNone
SummaryLLWP is a fast, efficient and easy solution for exploring and assigning spectra - relying on Loomis-Wood plots.
upload_time2025-07-10 09:25:28
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords llwp loomis-wood plots spectroscopy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LLWP - Luis' Loomis-Wood Program

LLWP allows you to efficiently and confidently assign (typically rotational or rovibrational) spectra by relying on Loomis-Wood plots.

A quickstart guide is given down below. For more information see its [website](https://llwp.astro.uni-koeln.de).

If you want to acknowledge LLWP, please cite the paper [LLWP - A new Loomis-Wood software at the example of Acetone-13C1](https://doi.org/10.1016/j.jms.2022.111674).


## Quickstart Guide

The preferred way to install LLWP is via Python's package manager pip.
Run the following command in a terminal to install LLWP:

```bash
pip install llwp
```

After installing LLWP via pip you can run it from any terminal by simply running

```bash
llwp
```

To see and assign your first series

1. open your spectrum and prediction files via drag and drop or *Files > Add Files*
2. specify the correct reference series in the *Reference Series* window
3. choose the fitfunction under *Fit > Choose Fit Function*
4. select the area around the experimental peak with the mouse to fit the data

### ASAP Mode

To start the [ASAP](https://doi.org/10.1016/j.jms.2015.02.014) mode of LLWP run

```bash
lasap
```

To see and assign your first cross-correlation peaks

1. open your spectrum, \*.egy, and \*.cat file via drag and drop or *Files > Add Files*
2. specify the correct energy levels in the *ASAP Settings* window
3. specify the correct unit conversion factor for the \*.cat file in the *Units Cat File* field (e.g. 3.335641e-05 for \*.cat file in MHz and \*.egy file in wavenumbers)
3. press *Calculate Cross Correlation*
3. choose the fitfunction under *Fit > Choose Fit Function*
4. select the area around the experimental peak with the mouse to fit the data

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llwp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "LLWP, Loomis-Wood Plots, Spectroscopy",
    "author": null,
    "author_email": "Luis Bonah <bonah@ph1.uni-koeln.de>",
    "download_url": "https://files.pythonhosted.org/packages/03/1b/1f8fed5d28ad32d58f42f84e463e921b419ce95bce71f580e58bbfaa9a14/llwp-2.0.20.tar.gz",
    "platform": null,
    "description": "# LLWP - Luis' Loomis-Wood Program\n\nLLWP allows you to efficiently and confidently assign (typically rotational or rovibrational) spectra by relying on Loomis-Wood plots.\n\nA quickstart guide is given down below. For more information see its [website](https://llwp.astro.uni-koeln.de).\n\nIf you want to acknowledge LLWP, please cite the paper [LLWP - A new Loomis-Wood software at the example of Acetone-13C1](https://doi.org/10.1016/j.jms.2022.111674).\n\n\n## Quickstart Guide\n\nThe preferred way to install LLWP is via Python's package manager pip.\nRun the following command in a terminal to install LLWP:\n\n```bash\npip install llwp\n```\n\nAfter installing LLWP via pip you can run it from any terminal by simply running\n\n```bash\nllwp\n```\n\nTo see and assign your first series\n\n1. open your spectrum and prediction files via drag and drop or *Files > Add Files*\n2. specify the correct reference series in the *Reference Series* window\n3. choose the fitfunction under *Fit > Choose Fit Function*\n4. select the area around the experimental peak with the mouse to fit the data\n\n### ASAP Mode\n\nTo start the [ASAP](https://doi.org/10.1016/j.jms.2015.02.014) mode of LLWP run\n\n```bash\nlasap\n```\n\nTo see and assign your first cross-correlation peaks\n\n1. open your spectrum, \\*.egy, and \\*.cat file via drag and drop or *Files > Add Files*\n2. specify the correct energy levels in the *ASAP Settings* window\n3. specify the correct unit conversion factor for the \\*.cat file in the *Units Cat File* field (e.g. 3.335641e-05 for \\*.cat file in MHz and \\*.egy file in wavenumbers)\n3. press *Calculate Cross Correlation*\n3. choose the fitfunction under *Fit > Choose Fit Function*\n4. select the area around the experimental peak with the mouse to fit the data\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "LLWP is a fast, efficient and easy solution for exploring and assigning spectra - relying on Loomis-Wood plots.",
    "version": "2.0.20",
    "project_urls": {
        "Homepage": "https://llwp.astro.uni-koeln.de/"
    },
    "split_keywords": [
        "llwp",
        " loomis-wood plots",
        " spectroscopy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ade6890aec0b427315b34f3bf133d2b1f0ff9d6bb7cba4879106eeb5ca9a7cc9",
                "md5": "8189e5978684f7e98589af08867001c3",
                "sha256": "64d71fb79fb2ff8221c656827a99fb1a161b03a9df6806c0fba34ae442baffb7"
            },
            "downloads": -1,
            "filename": "llwp-2.0.20-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8189e5978684f7e98589af08867001c3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 78385,
            "upload_time": "2025-07-10T09:25:27",
            "upload_time_iso_8601": "2025-07-10T09:25:27.503884Z",
            "url": "https://files.pythonhosted.org/packages/ad/e6/890aec0b427315b34f3bf133d2b1f0ff9d6bb7cba4879106eeb5ca9a7cc9/llwp-2.0.20-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "031b1f8fed5d28ad32d58f42f84e463e921b419ce95bce71f580e58bbfaa9a14",
                "md5": "d0d62bfdd7be67a799b8031444fcb531",
                "sha256": "c57225ac3d10846fac8c7c022d93ac1cbda75f6d39f93680ba58da485dcbebca"
            },
            "downloads": -1,
            "filename": "llwp-2.0.20.tar.gz",
            "has_sig": false,
            "md5_digest": "d0d62bfdd7be67a799b8031444fcb531",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 78635,
            "upload_time": "2025-07-10T09:25:28",
            "upload_time_iso_8601": "2025-07-10T09:25:28.864033Z",
            "url": "https://files.pythonhosted.org/packages/03/1b/1f8fed5d28ad32d58f42f84e463e921b419ce95bce71f580e58bbfaa9a14/llwp-2.0.20.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-10 09:25:28",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llwp"
}
        
Elapsed time: 1.03911s