# ✨ Loadwright
We want to
- Make it really easy to load test data apps in Python and get useful insights
We provide
- A `LoadTestRunner` that can record complex `User` interactions with your data app
- A `LoadTestViewer` that can show you the results of the recording.
The framework is based on [Playwright](https://playwright.dev/python/) and [Panel](https://panel.holoviz.org).
You can install and use the package as simple as.
```bash
pip install loadwright
```
See the [`tests`](tests) folder for examples
![Project Intro](https://user-images.githubusercontent.com/42288570/210130957-92dee566-4fcf-4a02-a8ee-830af6297307.gif)
Please note this project is at a **very early stage an the api and functionality will change**!
## Why not Locust
I love Locust. But Locust and Playwright just does not work well for me. See [locust-plugins #101](https://github.com/SvenskaSpel/locust-plugins/issues/101#issuecomment-1367216919). And this gave me an oppportunity to play with Panel+Async+Streaming.
## ⭐ Support
Please support [Panel](https://panel.holoviz.org) and
[awesome-panel](https://awesome-panel.org) by giving the projects a star on Github:
- [holoviz/panel](https://github.com/holoviz/panel).
- [awesome-panel/awesome-panel](https://github.com/awesome-panel/awesome-panel).
Thanks
## ❤️ Contribute
If you are looking to contribute to this project you can find ideas in the [issue tracker](https://github.com/awesome-panel/loadwright/issues). To get started check out the [DEVELOPER_GUIDE](DEVELOPER_GUIDE.md).
I would love to support and receive your contributions. Thanks.
[![Hacktober Fest](https://github.blog/wp-content/uploads/2022/10/hacktoberfestbanner.jpeg?fit=1200%2C630)](https://github.com/awesome-panel/loadwright/issues).
## Monitor
[![PyPI version](https://badge.fury.io/py/loadwright.svg)](https://pypi.org/project/loadwright/)
[![Downloads](https://pepy.tech/badge/loadwright/month)](https://pepy.tech/project/loadwright)
![Python Versions](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue)
[![License](https://img.shields.io/badge/License-MIT%202.0-blue.svg)](https://opensource.org/licenses/MIT)
![Test Results](https://github.com/awesome-panel/loadwright/actions/workflows/tests.yaml/badge.svg?branch=main)
Raw data
{
"_id": null,
"home_page": "",
"name": "loadwright",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "python,holoviz,panel,dataviz,dataapp,dashboard,datascience,analytics",
"author": "awesome-panel",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/08/31/56aa8904c6a25e7a0a5bff6a8b28b70b14cd4acbfad24528012c3e15fb36/loadwright-0.1.0.tar.gz",
"platform": null,
"description": "# \u2728 Loadwright\r\n\r\nWe want to\r\n\r\n- Make it really easy to load test data apps in Python and get useful insights\r\n\r\nWe provide\r\n\r\n- A `LoadTestRunner` that can record complex `User` interactions with your data app\r\n- A `LoadTestViewer` that can show you the results of the recording.\r\n\r\nThe framework is based on [Playwright](https://playwright.dev/python/) and [Panel](https://panel.holoviz.org).\r\n\r\nYou can install and use the package as simple as.\r\n\r\n```bash\r\npip install loadwright\r\n```\r\n\r\nSee the [`tests`](tests) folder for examples\r\n\r\n![Project Intro](https://user-images.githubusercontent.com/42288570/210130957-92dee566-4fcf-4a02-a8ee-830af6297307.gif)\r\n\r\nPlease note this project is at a **very early stage an the api and functionality will change**!\r\n\r\n## Why not Locust\r\n\r\nI love Locust. But Locust and Playwright just does not work well for me. See [locust-plugins #101](https://github.com/SvenskaSpel/locust-plugins/issues/101#issuecomment-1367216919). And this gave me an oppportunity to play with Panel+Async+Streaming.\r\n\r\n## \u2b50 Support\r\n\r\nPlease support [Panel](https://panel.holoviz.org) and\r\n[awesome-panel](https://awesome-panel.org) by giving the projects a star on Github:\r\n\r\n- [holoviz/panel](https://github.com/holoviz/panel).\r\n- [awesome-panel/awesome-panel](https://github.com/awesome-panel/awesome-panel).\r\n\r\nThanks\r\n\r\n## \u2764\ufe0f Contribute\r\n\r\nIf you are looking to contribute to this project you can find ideas in the [issue tracker](https://github.com/awesome-panel/loadwright/issues). To get started check out the [DEVELOPER_GUIDE](DEVELOPER_GUIDE.md).\r\n\r\nI would love to support and receive your contributions. Thanks.\r\n\r\n[![Hacktober Fest](https://github.blog/wp-content/uploads/2022/10/hacktoberfestbanner.jpeg?fit=1200%2C630)](https://github.com/awesome-panel/loadwright/issues).\r\n\r\n## Monitor\r\n\r\n[![PyPI version](https://badge.fury.io/py/loadwright.svg)](https://pypi.org/project/loadwright/)\r\n[![Downloads](https://pepy.tech/badge/loadwright/month)](https://pepy.tech/project/loadwright)\r\n![Python Versions](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue)\r\n[![License](https://img.shields.io/badge/License-MIT%202.0-blue.svg)](https://opensource.org/licenses/MIT)\r\n![Test Results](https://github.com/awesome-panel/loadwright/actions/workflows/tests.yaml/badge.svg?branch=main)\r\n",
"bugtrack_url": null,
"license": "",
"summary": "This package makes it super simple to do exploratory data analysis and develop high-quality Panel data apps ...",
"version": "0.1.0",
"split_keywords": [
"python",
"holoviz",
"panel",
"dataviz",
"dataapp",
"dashboard",
"datascience",
"analytics"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "93fb9b2524b2117435cff6c67348e834",
"sha256": "2c33b8efde44e5980566c3782943d194a6c97ddabc57adac82ac4690057dedfb"
},
"downloads": -1,
"filename": "loadwright-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "93fb9b2524b2117435cff6c67348e834",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9129,
"upload_time": "2023-01-01T15:16:19",
"upload_time_iso_8601": "2023-01-01T15:16:19.793861Z",
"url": "https://files.pythonhosted.org/packages/99/87/6381b4bbdc40cd6631b2e298cabfcf1236e0457fae33421b4cd54c904963/loadwright-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "1eb65f13fe8f6869baa0a90db422fb35",
"sha256": "6ec3ea02de4d60a931fbdcdec60d577a006eb6627e907ac5685cfa47c4214c6e"
},
"downloads": -1,
"filename": "loadwright-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "1eb65f13fe8f6869baa0a90db422fb35",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 10125,
"upload_time": "2023-01-01T15:16:21",
"upload_time_iso_8601": "2023-01-01T15:16:21.586076Z",
"url": "https://files.pythonhosted.org/packages/08/31/56aa8904c6a25e7a0a5bff6a8b28b70b14cd4acbfad24528012c3e15fb36/loadwright-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-01 15:16:21",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "loadwright"
}