## Install
```
$ pip install localaplace
```
This is an implement of Local Laplace Filter algorithm [1] [[Paper](https://people.csail.mit.edu/hasinoff/pubs/ParisEtAl11-lapfilters-lowres.pdf)]. Just see the effect below.
|Image modal| Original | Enhanced |
|:---:|:------------:|:------------:|
|RGB (800 × 533)| <img src="./images/flower.png" alt="Image 1" style="width: 600px; height: auto;"> | <img src="./images/flower_enchanced.png" alt="Image 2" style="width: 600px; height: auto;"> |
|RGBA (600 × 460)| <img src="./images/anime.png" alt="Image 1" style="width: 600px; height: auto;"> | <img src="./images/anime_enchanced.png" alt="Image 2" style="width: 600px; height: auto;"> |
|CT (3072 × 3072)| <img src="./images/ankle.png" alt="Image 1" style="width: 600px; height: auto;"> | <img src="./images/ankle_enchanced.png" alt="Image 2" style="width: 600px; height: auto;"> |
> This is a boring code when I attempt to finish my computer vision homework, but no available python package is found on PyPi
## Usage
Demo is as follows, the only function is `local_laplace_filter` (Please see my detailed comment of the function to see the meaning of arguments):
```python
import os
import cv2
import localaplace as llp
image = cv2.imread('./images/flower.png', cv2.IMREAD_UNCHANGED)
result = llp.local_laplace_filter(
image, 0.2, 0.5, 0.8, 100,
num_workers=-1,
verbose=1,
return_layers=False
)
# save result to disk
if not os.path.exists('results'):
os.makedirs('results')
cv2.imwrite('./results/flower_enchanced.png', result)
```
If you are interested in the Laplace Pyramid, set `return_layers` as `True` to get layers:
```python
result, layers = llp.local_laplace_filter(
image, 0.2, 0.5, 0.8, 100,
num_workers=-1,
verbose=1,
return_layers=True
)
# save inner layers to disk
for i, layer_image in enumerate(layers):
cv2.imwrite(f'./results/layer_{i + 1}.png', layer_image)
```
## Reference
[1] Paris, Sylvain, Samuel W. Hasinoff, and Jan Kautz. "Local Laplacian filters: edge-aware image processing with a Laplacian pyramid." Communications of the ACM 58.3 (2015): 81-91
Raw data
{
"_id": null,
"home_page": "",
"name": "localaplace",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.5",
"maintainer_email": "",
"keywords": "local laplace filter,local-laplace-filter,computer vision,tone mapping,image process",
"author": "",
"author_email": "lstm-kirigaya <1193466151@qq.com>",
"download_url": "https://files.pythonhosted.org/packages/55/0c/0b3708d27bd21cfa2dca3f4bdb910e5baef89a41d9f4233d13db63cf5cef/localaplace-0.0.1.tar.gz",
"platform": null,
"description": "## Install\r\n\r\n```\r\n$ pip install localaplace\r\n```\r\n\r\nThis is an implement of Local Laplace Filter algorithm [1] [[Paper](https://people.csail.mit.edu/hasinoff/pubs/ParisEtAl11-lapfilters-lowres.pdf)]. Just see the effect below.\r\n\r\n\r\n|Image modal| Original | Enhanced |\r\n|:---:|:------------:|:------------:|\r\n|RGB (800 \u00d7 533)| <img src=\"./images/flower.png\" alt=\"Image 1\" style=\"width: 600px; height: auto;\"> | <img src=\"./images/flower_enchanced.png\" alt=\"Image 2\" style=\"width: 600px; height: auto;\"> |\r\n|RGBA (600 \u00d7 460)| <img src=\"./images/anime.png\" alt=\"Image 1\" style=\"width: 600px; height: auto;\"> | <img src=\"./images/anime_enchanced.png\" alt=\"Image 2\" style=\"width: 600px; height: auto;\"> |\r\n|CT (3072 \u00d7 3072)| <img src=\"./images/ankle.png\" alt=\"Image 1\" style=\"width: 600px; height: auto;\"> | <img src=\"./images/ankle_enchanced.png\" alt=\"Image 2\" style=\"width: 600px; height: auto;\"> |\r\n\r\n\r\n\r\n> This is a boring code when I attempt to finish my computer vision homework, but no available python package is found on PyPi\r\n\r\n## Usage\r\n\r\nDemo is as follows, the only function is `local_laplace_filter` (Please see my detailed comment of the function to see the meaning of arguments):\r\n\r\n```python\r\nimport os\r\n\r\nimport cv2\r\nimport localaplace as llp\r\n\r\nimage = cv2.imread('./images/flower.png', cv2.IMREAD_UNCHANGED)\r\n\r\nresult = llp.local_laplace_filter(\r\n image, 0.2, 0.5, 0.8, 100, \r\n num_workers=-1, \r\n verbose=1, \r\n return_layers=False\r\n)\r\n\r\n# save result to disk\r\nif not os.path.exists('results'):\r\n os.makedirs('results')\r\ncv2.imwrite('./results/flower_enchanced.png', result)\r\n```\r\n\r\nIf you are interested in the Laplace Pyramid, set `return_layers` as `True` to get layers:\r\n\r\n```python\r\nresult, layers = llp.local_laplace_filter(\r\n image, 0.2, 0.5, 0.8, 100, \r\n num_workers=-1, \r\n verbose=1, \r\n return_layers=True\r\n)\r\n\r\n# save inner layers to disk\r\nfor i, layer_image in enumerate(layers):\r\n cv2.imwrite(f'./results/layer_{i + 1}.png', layer_image)\r\n```\r\n\r\n\r\n## Reference\r\n\r\n[1] Paris, Sylvain, Samuel W. Hasinoff, and Jan Kautz. \"Local Laplacian filters: edge-aware image processing with a Laplacian pyramid.\" Communications of the ACM 58.3 (2015): 81-91\r\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "implement of local laplace filter algorithm",
"version": "0.0.1",
"project_urls": {
"text": "https://github.com/LSTM-Kirigaya"
},
"split_keywords": [
"local laplace filter",
"local-laplace-filter",
"computer vision",
"tone mapping",
"image process"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4b31d549dae69803d74d09591bb97f7b2cf15c19d66fca440f19d85670a8c4b6",
"md5": "d2be81a194a96e823dda4ea77f44620a",
"sha256": "37ebf40cbee4ae2bb6870e6084824938af56012c3fb34932e2a76d15ee998ddf"
},
"downloads": -1,
"filename": "localaplace-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d2be81a194a96e823dda4ea77f44620a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.5",
"size": 10367,
"upload_time": "2023-11-11T15:15:48",
"upload_time_iso_8601": "2023-11-11T15:15:48.410489Z",
"url": "https://files.pythonhosted.org/packages/4b/31/d549dae69803d74d09591bb97f7b2cf15c19d66fca440f19d85670a8c4b6/localaplace-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "550c0b3708d27bd21cfa2dca3f4bdb910e5baef89a41d9f4233d13db63cf5cef",
"md5": "2dac4740d7da117bd5fe45010097d97e",
"sha256": "ecfab21738cb8582484f3ebc5d994db640282ab74d3d3f800571f49b89f4f4f8"
},
"downloads": -1,
"filename": "localaplace-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "2dac4740d7da117bd5fe45010097d97e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5",
"size": 9912,
"upload_time": "2023-11-11T15:15:50",
"upload_time_iso_8601": "2023-11-11T15:15:50.473160Z",
"url": "https://files.pythonhosted.org/packages/55/0c/0b3708d27bd21cfa2dca3f4bdb910e5baef89a41d9f4233d13db63cf5cef/localaplace-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-11 15:15:50",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "localaplace"
}