# lollms_client
[](https://pypi.org/project/lollms-client/) [](https://pypi.org/project/lollms-client/) [](https://www.apache.org/licenses/LICENSE-2.0)
Welcome to the lollms_client repository! This library is built by [ParisNeo](https://github.com/ParisNeo) and provides a convenient way to interact with the lollms (Lord Of Large Language Models) API. It is available on [PyPI](https://pypi.org/project/lollms-client/) and distributed under the Apache 2.0 License.
## Installation
To install the library from PyPI using `pip`, run:
```
pip install lollms-client
```
## Usage
To use the lollms_client, first import the necessary classes:
```python
from lollms_client import LollmsClient
# Initialize the LollmsClient instance this uses the default lollms localhost service http://localhost:9600
lc = LollmsClient()
# You can also use a different host and port number if you please
lc = LollmsClient("http://some.other.server:9600")
# You can also use a local or remote ollama server
lc = LollmsClient(model_name="mistral-nemo:latest", default_generation_mode = ELF_GENERATION_FORMAT.OLLAMA)
# You can also use a local or remote openai server (you can either set your key as an environment variable or pass it here)
lc = LollmsClient(model_name="gpt-3.5-turbo-0125", default_generation_mode = ELF_GENERATION_FORMAT.OPENAI)
```
### Text Generation
Use `generate()` for generating text from the lollms API.
```python
response = lc.generate(prompt="Once upon a time", stream=False, temperature=0.5)
print(response)
```
### List Mounted Personalities (only on lollms)
List mounted personalities of the lollms API with the `listMountedPersonalities()` method.
```python
response = lc.listMountedPersonalities()
print(response)
```
### List Models
List available models of the lollms API with the `listModels()` method.
```python
response = lc.listModels()
print(response)
```
## Complete Example
```python
from lollms_client import LollmsClient
# Initialize the LollmsClient instance
lc = LollmsClient()
# Generate Text
response = lc.generate(prompt="Once upon a time", stream=False, temperature=0.5)
print(response)
# List Mounted Personalities
response = lc.listMountedPersonalities()
print(response)
# List Models
response = lc.listModels()
print(response)
```
Feel free to contribute to the project by submitting issues or pull requests. Follow [ParisNeo](https://github.com/ParisNeo) on [GitHub](https://github.com/ParisNeo), [Twitter](https://twitter.com/ParisNeo_AI), [Discord](https://discord.gg/BDxacQmv), [Sub-Reddit](r/lollms), and [Instagram](https://www.instagram.com/spacenerduino/) for updates and news.
Happy coding!
Raw data
{
"_id": null,
"home_page": "https://github.com/ParisNeo/lollms_client",
"name": "lollms-client",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "ParisNeo",
"author_email": "parisneoai@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/9a/86/b4fdf09fa51ce1521814d96b7424fc0f829104bdc21397870b25a5998618/lollms_client-0.8.2.tar.gz",
"platform": null,
"description": "# lollms_client\r\n\r\n[](https://pypi.org/project/lollms-client/) [](https://pypi.org/project/lollms-client/) [](https://www.apache.org/licenses/LICENSE-2.0)\r\n\r\nWelcome to the lollms_client repository! This library is built by [ParisNeo](https://github.com/ParisNeo) and provides a convenient way to interact with the lollms (Lord Of Large Language Models) API. It is available on [PyPI](https://pypi.org/project/lollms-client/) and distributed under the Apache 2.0 License.\r\n\r\n## Installation\r\n\r\nTo install the library from PyPI using `pip`, run:\r\n\r\n```\r\npip install lollms-client\r\n``` \r\n\r\n## Usage\r\n\r\nTo use the lollms_client, first import the necessary classes:\r\n\r\n```python\r\nfrom lollms_client import LollmsClient\r\n\r\n# Initialize the LollmsClient instance this uses the default lollms localhost service http://localhost:9600\r\nlc = LollmsClient()\r\n# You can also use a different host and port number if you please\r\nlc = LollmsClient(\"http://some.other.server:9600\")\r\n# You can also use a local or remote ollama server\r\nlc = LollmsClient(model_name=\"mistral-nemo:latest\", default_generation_mode = ELF_GENERATION_FORMAT.OLLAMA)\r\n# You can also use a local or remote openai server (you can either set your key as an environment variable or pass it here)\r\nlc = LollmsClient(model_name=\"gpt-3.5-turbo-0125\", default_generation_mode = ELF_GENERATION_FORMAT.OPENAI)\r\n```\r\n\r\n### Text Generation\r\n\r\nUse `generate()` for generating text from the lollms API.\r\n\r\n```python\r\nresponse = lc.generate(prompt=\"Once upon a time\", stream=False, temperature=0.5)\r\nprint(response)\r\n```\r\n\r\n\r\n### List Mounted Personalities (only on lollms)\r\n\r\nList mounted personalities of the lollms API with the `listMountedPersonalities()` method.\r\n\r\n```python\r\nresponse = lc.listMountedPersonalities()\r\nprint(response)\r\n```\r\n\r\n### List Models\r\n\r\nList available models of the lollms API with the `listModels()` method.\r\n\r\n```python\r\nresponse = lc.listModels()\r\nprint(response)\r\n```\r\n\r\n## Complete Example\r\n\r\n```python\r\nfrom lollms_client import LollmsClient\r\n\r\n# Initialize the LollmsClient instance\r\nlc = LollmsClient()\r\n\r\n# Generate Text\r\nresponse = lc.generate(prompt=\"Once upon a time\", stream=False, temperature=0.5)\r\nprint(response)\r\n\r\n# List Mounted Personalities\r\nresponse = lc.listMountedPersonalities()\r\nprint(response)\r\n\r\n# List Models\r\nresponse = lc.listModels()\r\nprint(response)\r\n```\r\n\r\nFeel free to contribute to the project by submitting issues or pull requests. Follow [ParisNeo](https://github.com/ParisNeo) on [GitHub](https://github.com/ParisNeo), [Twitter](https://twitter.com/ParisNeo_AI), [Discord](https://discord.gg/BDxacQmv), [Sub-Reddit](r/lollms), and [Instagram](https://www.instagram.com/spacenerduino/) for updates and news.\r\n\r\nHappy coding!\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A client library for LoLLMs generate endpoint",
"version": "0.8.2",
"project_urls": {
"Homepage": "https://github.com/ParisNeo/lollms_client"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "337b127c3a8518219b7552c6073bd6c0cf14484595c8350c7a75d60770ae3646",
"md5": "b7e36ec36bc9cff1897824894b7f53f3",
"sha256": "9a49f8277630d459fd8d395dc323bba253dece62cb287afdb0e5d6c8c907af9a"
},
"downloads": -1,
"filename": "lollms_client-0.8.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b7e36ec36bc9cff1897824894b7f53f3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 60782,
"upload_time": "2025-02-11T14:06:13",
"upload_time_iso_8601": "2025-02-11T14:06:13.348456Z",
"url": "https://files.pythonhosted.org/packages/33/7b/127c3a8518219b7552c6073bd6c0cf14484595c8350c7a75d60770ae3646/lollms_client-0.8.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9a86b4fdf09fa51ce1521814d96b7424fc0f829104bdc21397870b25a5998618",
"md5": "09cdbf233c399c140273b45d6911cee0",
"sha256": "5ab09cbe4c1d9639045d62e51b7a7f4ab487b06519a8120b403883025eb0d3ec"
},
"downloads": -1,
"filename": "lollms_client-0.8.2.tar.gz",
"has_sig": false,
"md5_digest": "09cdbf233c399c140273b45d6911cee0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 55744,
"upload_time": "2025-02-11T14:06:15",
"upload_time_iso_8601": "2025-02-11T14:06:15.757722Z",
"url": "https://files.pythonhosted.org/packages/9a/86/b4fdf09fa51ce1521814d96b7424fc0f829104bdc21397870b25a5998618/lollms_client-0.8.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-11 14:06:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ParisNeo",
"github_project": "lollms_client",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "requests",
"specs": [
[
">=",
"2.25.1"
]
]
},
{
"name": "ascii-colors",
"specs": []
},
{
"name": "pillow",
"specs": []
},
{
"name": "pipmaster",
"specs": []
},
{
"name": "yaml",
"specs": []
},
{
"name": "tiktoken",
"specs": []
},
{
"name": "pydantic",
"specs": []
},
{
"name": "lollmsvectordb",
"specs": []
},
{
"name": "pipmaster",
"specs": []
},
{
"name": "numpy",
"specs": []
}
],
"lcname": "lollms-client"
}