lonboard


Namelonboard JSON
Version 0.10.2 PyPI version JSON
download
home_pagehttps://github.com/developmentseed/lonboard
SummaryFast, interactive geospatial data visualization in Jupyter.
upload_time2024-10-10 14:28:43
maintainerNone
docs_urlNone
authorKyle Barron
requires_python<4.0,>=3.8
licenseMIT
keywords gis cartography visualization geopandas pandas shapely
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Lonboard

[![PyPI][pypi_badge]][pypi_link]
[![Conda Version][conda_version_badge]][conda_version]
[![Binder][binder_badge]][binder_jupyterlab_url]
[![open_in_colab][colab_badge]][colab_notebook_link]

[pypi_badge]: https://badge.fury.io/py/lonboard.svg
[pypi_link]: https://pypi.org/project/lonboard/
[binder_badge]: https://mybinder.org/badge_logo.svg
[binder_jupyterlab_url]: https://mybinder.org/v2/gh/developmentseed/lonboard/HEAD?urlpath=lab/tree/examples/
[colab_badge]: https://colab.research.google.com/assets/colab-badge.svg
[colab_notebook_link]: https://colab.research.google.com/github/developmentseed/lonboard/blob/main
[conda_version_badge]: https://img.shields.io/conda/vn/conda-forge/lonboard.svg
[conda_version]: https://anaconda.org/conda-forge/lonboard

A Python library for fast, interactive geospatial vector data visualization in Jupyter.

Building on cutting-edge technologies like [GeoArrow](https://github.com/geoarrow/geoarrow) and [GeoParquet](https://github.com/opengeospatial/geoparquet) in conjunction with [GPU-based map rendering](https://deck.gl/), Lonboard aims to enable visualizing large geospatial datasets interactively through a simple interface.

![](assets/hero-animated.gif)

<p align="center">3 million points rendered from a GeoPandas <code>GeoDataFrame</code> in JupyterLab. <a href="https://developmentseed.org/lonboard/latest/examples/internet-speeds/" target="_blank"> Example notebook</a>.</p>

## Install

To install Lonboard using pip:

```
pip install lonboard
```

Lonboard is on [conda-forge](https://anaconda.org/conda-forge/lonboard) and can be installed using [conda](https://docs.conda.io), [mamba](https://mamba.readthedocs.io/), or [pixi](https://pixi.sh/). To install Lonboard using conda:

```
conda install -c conda-forge lonboard
```

To install from source, refer to the [developer documentation](https://github.com/developmentseed/lonboard/blob/main/DEVELOP.md).

## Get Started

For the simplest rendering, pass geospatial data into the top-level [`viz` function](https://developmentseed.org/lonboard/latest/api/viz/#lonboard.viz.viz).

```py
import geopandas as gpd
from lonboard import viz

gdf = gpd.GeoDataFrame(...)
viz(gdf)
```

Under the hood, this delegates to a [`ScatterplotLayer`](https://developmentseed.org/lonboard/latest/api/layers/scatterplot-layer/), [`PathLayer`](https://developmentseed.org/lonboard/latest/api/layers/path-layer/), or [`PolygonLayer`](https://developmentseed.org/lonboard/latest/api/layers/polygon-layer/). Refer to the [documentation](https://developmentseed.org/lonboard/) and [examples](https://developmentseed.org/lonboard/latest/examples/internet-speeds/) for more control over rendering.

## Documentation

Refer to the documentation at [developmentseed.org/lonboard](https://developmentseed.org/lonboard/).

## Why the name?

This is a new binding to the [deck.gl](https://deck.gl) geospatial data visualization library. A "deck" is the part of a skateboard you ride on. What's a fast, geospatial skateboard? A <em>lon</em>board.

![](assets/dalle-lonboard.jpg)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/developmentseed/lonboard",
    "name": "lonboard",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": "GIS, cartography, visualization, geopandas, pandas, shapely",
    "author": "Kyle Barron",
    "author_email": "kyle@developmentseed.org",
    "download_url": "https://files.pythonhosted.org/packages/fa/f7/ea55a7ebd869be0fd623ecdca24b31d79dbf670d2a7595cd3218128d6786/lonboard-0.10.2.tar.gz",
    "platform": null,
    "description": "# Lonboard\n\n[![PyPI][pypi_badge]][pypi_link]\n[![Conda Version][conda_version_badge]][conda_version]\n[![Binder][binder_badge]][binder_jupyterlab_url]\n[![open_in_colab][colab_badge]][colab_notebook_link]\n\n[pypi_badge]: https://badge.fury.io/py/lonboard.svg\n[pypi_link]: https://pypi.org/project/lonboard/\n[binder_badge]: https://mybinder.org/badge_logo.svg\n[binder_jupyterlab_url]: https://mybinder.org/v2/gh/developmentseed/lonboard/HEAD?urlpath=lab/tree/examples/\n[colab_badge]: https://colab.research.google.com/assets/colab-badge.svg\n[colab_notebook_link]: https://colab.research.google.com/github/developmentseed/lonboard/blob/main\n[conda_version_badge]: https://img.shields.io/conda/vn/conda-forge/lonboard.svg\n[conda_version]: https://anaconda.org/conda-forge/lonboard\n\nA Python library for fast, interactive geospatial vector data visualization in Jupyter.\n\nBuilding on cutting-edge technologies like [GeoArrow](https://github.com/geoarrow/geoarrow) and [GeoParquet](https://github.com/opengeospatial/geoparquet) in conjunction with [GPU-based map rendering](https://deck.gl/), Lonboard aims to enable visualizing large geospatial datasets interactively through a simple interface.\n\n![](assets/hero-animated.gif)\n\n<p align=\"center\">3 million points rendered from a GeoPandas <code>GeoDataFrame</code> in JupyterLab. <a href=\"https://developmentseed.org/lonboard/latest/examples/internet-speeds/\" target=\"_blank\"> Example notebook</a>.</p>\n\n## Install\n\nTo install Lonboard using pip:\n\n```\npip install lonboard\n```\n\nLonboard is on [conda-forge](https://anaconda.org/conda-forge/lonboard) and can be installed using [conda](https://docs.conda.io), [mamba](https://mamba.readthedocs.io/), or [pixi](https://pixi.sh/). To install Lonboard using conda:\n\n```\nconda install -c conda-forge lonboard\n```\n\nTo install from source, refer to the [developer documentation](https://github.com/developmentseed/lonboard/blob/main/DEVELOP.md).\n\n## Get Started\n\nFor the simplest rendering, pass geospatial data into the top-level [`viz` function](https://developmentseed.org/lonboard/latest/api/viz/#lonboard.viz.viz).\n\n```py\nimport geopandas as gpd\nfrom lonboard import viz\n\ngdf = gpd.GeoDataFrame(...)\nviz(gdf)\n```\n\nUnder the hood, this delegates to a [`ScatterplotLayer`](https://developmentseed.org/lonboard/latest/api/layers/scatterplot-layer/), [`PathLayer`](https://developmentseed.org/lonboard/latest/api/layers/path-layer/), or [`PolygonLayer`](https://developmentseed.org/lonboard/latest/api/layers/polygon-layer/). Refer to the [documentation](https://developmentseed.org/lonboard/) and [examples](https://developmentseed.org/lonboard/latest/examples/internet-speeds/) for more control over rendering.\n\n## Documentation\n\nRefer to the documentation at [developmentseed.org/lonboard](https://developmentseed.org/lonboard/).\n\n## Why the name?\n\nThis is a new binding to the [deck.gl](https://deck.gl) geospatial data visualization library. A \"deck\" is the part of a skateboard you ride on. What's a fast, geospatial skateboard? A <em>lon</em>board.\n\n![](assets/dalle-lonboard.jpg)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Fast, interactive geospatial data visualization in Jupyter.",
    "version": "0.10.2",
    "project_urls": {
        "Documentation": "https://developmentseed.org/lonboard/latest/",
        "Homepage": "https://github.com/developmentseed/lonboard",
        "Repository": "https://github.com/developmentseed/lonboard"
    },
    "split_keywords": [
        "gis",
        " cartography",
        " visualization",
        " geopandas",
        " pandas",
        " shapely"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7f3db45380ea85d1655d63e0ae99ce71bdb9fd23ddf9e9b4ae69914a655f6824",
                "md5": "01a52c7faf2019fc9063ae757a179b3f",
                "sha256": "d77ed4ed4564288a66d628551af9cfc4e63896bb4bfd31ce3d43bce254316041"
            },
            "downloads": -1,
            "filename": "lonboard-0.10.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "01a52c7faf2019fc9063ae757a179b3f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 884149,
            "upload_time": "2024-10-10T14:28:39",
            "upload_time_iso_8601": "2024-10-10T14:28:39.979756Z",
            "url": "https://files.pythonhosted.org/packages/7f/3d/b45380ea85d1655d63e0ae99ce71bdb9fd23ddf9e9b4ae69914a655f6824/lonboard-0.10.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "faf7ea55a7ebd869be0fd623ecdca24b31d79dbf670d2a7595cd3218128d6786",
                "md5": "3689684f86db5d294588da1060f6832c",
                "sha256": "c254c7b5711888db2eeb6eb917ab7a7e53782899d66871033634a862a69a2647"
            },
            "downloads": -1,
            "filename": "lonboard-0.10.2.tar.gz",
            "has_sig": false,
            "md5_digest": "3689684f86db5d294588da1060f6832c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 868402,
            "upload_time": "2024-10-10T14:28:43",
            "upload_time_iso_8601": "2024-10-10T14:28:43.254026Z",
            "url": "https://files.pythonhosted.org/packages/fa/f7/ea55a7ebd869be0fd623ecdca24b31d79dbf670d2a7595cd3218128d6786/lonboard-0.10.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-10 14:28:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "developmentseed",
    "github_project": "lonboard",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "lonboard"
}
        
Elapsed time: 0.35475s