lookahead-keys-attention


Namelookahead-keys-attention JSON
Version 0.0.4 PyPI version JSON
download
home_pageNone
SummaryLookahead Keys Attention
upload_time2025-09-19 21:56:33
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT License Copyright (c) 2025 Phil Wang Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords artificial intelligence attention mechanism deep learning multi-modal transformer
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="./fig3.png" width="400px"></img>

## Lookahead Keys Attention (wip)

Causal Attention with [Lookahead Keys](https://arxiv.org/abs/2509.07301)

## Installation

```bash
pip install lookahead-keys-attention
```

## Usage

```python
import torch
from lookahead_keys_attention import Castle

# Initialize the Castle attention module
model = Castle(
    dim=512,           # input dimension
    heads=8,           # number of attention heads
    dim_head=64,       # dimension per head
    use_triton=None    # auto-detect CUDA for Triton optimization
)

# Example with CUDA sequence
batch_size = 2
seq_len = 128
dim = 512

# Move to CUDA if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# Input sequence
x = torch.randn(batch_size, seq_len, dim).to(device)

# Forward pass
output = model(x)  # Shape: [batch_size, seq_len, dim]

# For inference with caching (single token generation)
cache = None
for i in range(seq_len):
    token = x[:, i:i+1, :]  # Single token
    output, cache = model(token, cache=cache, return_next_cache=True)
```

## Citations

```bibtex
@inproceedings{Song2025CausalAW,
    title   = {Causal Attention with Lookahead Keys},
    author  = {Zhuoqing Song and Peng Sun and Huizhuo Yuan and Quanquan Gu},
    year    = {2025},
    url     = {https://api.semanticscholar.org/CorpusID:281218151}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "lookahead-keys-attention",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "artificial intelligence, attention mechanism, deep learning, multi-modal transformer",
    "author": null,
    "author_email": "Phil Wang <lucidrains@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/34/29/dc91da07027b080d0f371e1e847d182faf8b257cb3b8502f92091f0d7bda/lookahead_keys_attention-0.0.4.tar.gz",
    "platform": null,
    "description": "<img src=\"./fig3.png\" width=\"400px\"></img>\n\n## Lookahead Keys Attention (wip)\n\nCausal Attention with [Lookahead Keys](https://arxiv.org/abs/2509.07301)\n\n## Installation\n\n```bash\npip install lookahead-keys-attention\n```\n\n## Usage\n\n```python\nimport torch\nfrom lookahead_keys_attention import Castle\n\n# Initialize the Castle attention module\nmodel = Castle(\n    dim=512,           # input dimension\n    heads=8,           # number of attention heads\n    dim_head=64,       # dimension per head\n    use_triton=None    # auto-detect CUDA for Triton optimization\n)\n\n# Example with CUDA sequence\nbatch_size = 2\nseq_len = 128\ndim = 512\n\n# Move to CUDA if available\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\nmodel = model.to(device)\n\n# Input sequence\nx = torch.randn(batch_size, seq_len, dim).to(device)\n\n# Forward pass\noutput = model(x)  # Shape: [batch_size, seq_len, dim]\n\n# For inference with caching (single token generation)\ncache = None\nfor i in range(seq_len):\n    token = x[:, i:i+1, :]  # Single token\n    output, cache = model(token, cache=cache, return_next_cache=True)\n```\n\n## Citations\n\n```bibtex\n@inproceedings{Song2025CausalAW,\n    title   = {Causal Attention with Lookahead Keys},\n    author  = {Zhuoqing Song and Peng Sun and Huizhuo Yuan and Quanquan Gu},\n    year    = {2025},\n    url     = {https://api.semanticscholar.org/CorpusID:281218151}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT License\n        \n        Copyright (c) 2025 Phil Wang\n        \n        Permission is hereby granted, free of charge, to any person obtaining a copy\n        of this software and associated documentation files (the \"Software\"), to deal\n        in the Software without restriction, including without limitation the rights\n        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n        copies of the Software, and to permit persons to whom the Software is\n        furnished to do so, subject to the following conditions:\n        \n        The above copyright notice and this permission notice shall be included in all\n        copies or substantial portions of the Software.\n        \n        THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n        SOFTWARE.",
    "summary": "Lookahead Keys Attention",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://pypi.org/project/lookahead-keys-attention/",
        "Repository": "https://github.com/lucidrains/lookahead-keys-attention"
    },
    "split_keywords": [
        "artificial intelligence",
        " attention mechanism",
        " deep learning",
        " multi-modal transformer"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f0746b0c415a8c4bb6c17c9044bc873b4f057de2ffe2e2fc8485354f0da547a6",
                "md5": "8ad70ed6af0ce419ef57faa6fe96d73d",
                "sha256": "5542945613e10fd253cbb40ada7e92fd978a7fd4afc6adbd24c80b2f73ffc503"
            },
            "downloads": -1,
            "filename": "lookahead_keys_attention-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8ad70ed6af0ce419ef57faa6fe96d73d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 10611,
            "upload_time": "2025-09-19T21:56:31",
            "upload_time_iso_8601": "2025-09-19T21:56:31.077901Z",
            "url": "https://files.pythonhosted.org/packages/f0/74/6b0c415a8c4bb6c17c9044bc873b4f057de2ffe2e2fc8485354f0da547a6/lookahead_keys_attention-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3429dc91da07027b080d0f371e1e847d182faf8b257cb3b8502f92091f0d7bda",
                "md5": "b538982ef8b7e8cb5dfce2c0c8843c17",
                "sha256": "91dddb6526e06d0590a0ebf9779a4dfeaa78e444cfde9cc96086e1ebb3c86291"
            },
            "downloads": -1,
            "filename": "lookahead_keys_attention-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "b538982ef8b7e8cb5dfce2c0c8843c17",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 154150,
            "upload_time": "2025-09-19T21:56:33",
            "upload_time_iso_8601": "2025-09-19T21:56:33.254654Z",
            "url": "https://files.pythonhosted.org/packages/34/29/dc91da07027b080d0f371e1e847d182faf8b257cb3b8502f92091f0d7bda/lookahead_keys_attention-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-19 21:56:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lucidrains",
    "github_project": "lookahead-keys-attention",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "lookahead-keys-attention"
}
        
Elapsed time: 2.19634s