lorem-pysum


Namelorem-pysum JSON
Version 1.4.10 PyPI version JSON
download
home_pagehttps://gitlab.com/mburkard/lorem-pysum
SummaryLibrary to generate instances of Pydantic models.
upload_time2025-01-01 02:19:03
maintainerNone
docs_urlNone
authorMatthew Burkard
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--suppress HtmlDeprecatedAttribute -->
<div align=center>
  <h1>Lorem Pysum</h1>
  <h3>Generate instances of Pydantic models.</h3>
  <img src="https://img.shields.io/badge/License-MIT-blue.svg"
   height="20"
   alt="License: MIT">
  <img src="https://img.shields.io/badge/code%20style-black-000000.svg"
   height="20"
   alt="Code style: black">
  <img src="https://img.shields.io/pypi/v/lorem-pysum.svg"
   height="20"
   alt="PyPI version">
  <img src="https://img.shields.io/badge/coverage-100%25-success"
   height="20"
   alt="Code Coverage">
</div>

## Install

Lorem Pysum is on PyPI and can be installed with:

```shell
poetry add lorem-pysum
```

or

```shell
pip install lorem-pysum
```

## Usage

Given a Pydantic model type Lorem Pysum can generate instances of that model with
randomly generated values.

## Example

```python
from enum import auto, Enum
from uuid import UUID

import lorem_pysum
from pydantic import BaseModel


class Flavor(Enum):
    MOCHA = auto()
    VANILLA = auto()


class Brand(BaseModel):
    brand_name: str


class Coffee(BaseModel):
    id: UUID
    description: str
    cream: bool
    sweetener: int
    flavor: Flavor
    brand: Brand


lorem_pysum.generate(Coffee)
# Result -> id=UUID('550342d5-13ce-4ee1-b73d-d3c5e81607ce') description='string' cream=True sweetener=0 flavor=<Flavor.MOCHA: 1> brand=Brand(brand_name='string')
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/mburkard/lorem-pysum",
    "name": "lorem-pysum",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Matthew Burkard",
    "author_email": "matthewjburkard@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d7/04/bd6937be44cf716c90fac88401e5cd414dc8c265ffb92d30ec7f0c3389fe/lorem_pysum-1.4.10.tar.gz",
    "platform": null,
    "description": "<!--suppress HtmlDeprecatedAttribute -->\n<div align=center>\n  <h1>Lorem Pysum</h1>\n  <h3>Generate instances of Pydantic models.</h3>\n  <img src=\"https://img.shields.io/badge/License-MIT-blue.svg\"\n   height=\"20\"\n   alt=\"License: MIT\">\n  <img src=\"https://img.shields.io/badge/code%20style-black-000000.svg\"\n   height=\"20\"\n   alt=\"Code style: black\">\n  <img src=\"https://img.shields.io/pypi/v/lorem-pysum.svg\"\n   height=\"20\"\n   alt=\"PyPI version\">\n  <img src=\"https://img.shields.io/badge/coverage-100%25-success\"\n   height=\"20\"\n   alt=\"Code Coverage\">\n</div>\n\n## Install\n\nLorem Pysum is on PyPI and can be installed with:\n\n```shell\npoetry add lorem-pysum\n```\n\nor\n\n```shell\npip install lorem-pysum\n```\n\n## Usage\n\nGiven a Pydantic model type Lorem Pysum can generate instances of that model with\nrandomly generated values.\n\n## Example\n\n```python\nfrom enum import auto, Enum\nfrom uuid import UUID\n\nimport lorem_pysum\nfrom pydantic import BaseModel\n\n\nclass Flavor(Enum):\n    MOCHA = auto()\n    VANILLA = auto()\n\n\nclass Brand(BaseModel):\n    brand_name: str\n\n\nclass Coffee(BaseModel):\n    id: UUID\n    description: str\n    cream: bool\n    sweetener: int\n    flavor: Flavor\n    brand: Brand\n\n\nlorem_pysum.generate(Coffee)\n# Result -> id=UUID('550342d5-13ce-4ee1-b73d-d3c5e81607ce') description='string' cream=True sweetener=0 flavor=<Flavor.MOCHA: 1> brand=Brand(brand_name='string')\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Library to generate instances of Pydantic models.",
    "version": "1.4.10",
    "project_urls": {
        "Homepage": "https://gitlab.com/mburkard/lorem-pysum",
        "Repository": "https://gitlab.com/mburkard/lorem-pysum"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "23ab1364f3637bff8b4e1d9ade562f0ae493094b818c529d3009869a3a3fb6fe",
                "md5": "50b8f59348c93103bffbbd56aba60478",
                "sha256": "fb48f0eba047dfde4eff41a3bd8e886f9ccb089d06f908b665d6e3df86abd506"
            },
            "downloads": -1,
            "filename": "lorem_pysum-1.4.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "50b8f59348c93103bffbbd56aba60478",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 7509,
            "upload_time": "2025-01-01T02:19:00",
            "upload_time_iso_8601": "2025-01-01T02:19:00.953387Z",
            "url": "https://files.pythonhosted.org/packages/23/ab/1364f3637bff8b4e1d9ade562f0ae493094b818c529d3009869a3a3fb6fe/lorem_pysum-1.4.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d704bd6937be44cf716c90fac88401e5cd414dc8c265ffb92d30ec7f0c3389fe",
                "md5": "3b5e74cc70726a3d204d09999ba30658",
                "sha256": "80a5a46cee33f86abb0ebcfcea42fecb6c374c7cfbe0fd5552410eb36c4d18d4"
            },
            "downloads": -1,
            "filename": "lorem_pysum-1.4.10.tar.gz",
            "has_sig": false,
            "md5_digest": "3b5e74cc70726a3d204d09999ba30658",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 7086,
            "upload_time": "2025-01-01T02:19:03",
            "upload_time_iso_8601": "2025-01-01T02:19:03.180718Z",
            "url": "https://files.pythonhosted.org/packages/d7/04/bd6937be44cf716c90fac88401e5cd414dc8c265ffb92d30ec7f0c3389fe/lorem_pysum-1.4.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-01 02:19:03",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "mburkard",
    "gitlab_project": "lorem-pysum",
    "lcname": "lorem-pysum"
}
        
Elapsed time: 0.80654s