# 💘 Lovely JAX
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## [Read full docs](https://xl0.github.io/lovely-jax) \| ❤️ [Lovely Tensors](https://github.com/xl0/lovely-tensors) \| 💟 [Lovely `NumPy`](https://github.com/xl0/lovely-numpy) \| [Discord](https://discord.gg/4NxRV7NH)
## Note: I’m pretty new to JAX
If something does not make sense, shoot me an
[Issue](https://github.com/xl0/lovely-jax/issues) or ping me on Discord
and let me know how it’s supposed to work!
Better support for sharded arrays and solid jit/pmap/vmap support coming
soon!
## Install
``` sh
pip install lovely-jax
```
## How to use
How often do you find yourself debugging JAX code? You dump an array to
the cell output, and see this:
``` python
numbers
```
Array([[[-0.354, -0.337, -0.405, ..., -0.56 , -0.474, 2.249],
[-0.405, -0.423, -0.491, ..., -0.919, -0.851, 2.163],
[-0.474, -0.474, -0.542, ..., -1.039, -1.039, 2.198],
...,
[-0.902, -0.834, -0.936, ..., -1.467, -1.296, 2.232],
[-0.851, -0.782, -0.936, ..., -1.604, -1.501, 2.18 ],
[-0.834, -0.816, -0.971, ..., -1.656, -1.553, 2.112]],
[[-0.197, -0.197, -0.303, ..., -0.478, -0.373, 2.411],
[-0.25 , -0.232, -0.338, ..., -0.705, -0.67 , 2.359],
[-0.303, -0.285, -0.39 , ..., -0.74 , -0.81 , 2.376],
...,
[-0.425, -0.232, -0.373, ..., -1.09 , -1.02 , 2.429],
[-0.39 , -0.232, -0.425, ..., -1.23 , -1.23 , 2.411],
[-0.408, -0.285, -0.478, ..., -1.283, -1.283, 2.341]],
[[-0.672, -0.985, -0.881, ..., -0.968, -0.689, 2.396],
[-0.724, -1.072, -0.968, ..., -1.247, -1.02 , 2.326],
[-0.828, -1.125, -1.02 , ..., -1.264, -1.16 , 2.379],
...,
[-1.229, -1.473, -1.386, ..., -1.508, -1.264, 2.518],
[-1.194, -1.456, -1.421, ..., -1.648, -1.473, 2.431],
[-1.229, -1.526, -1.508, ..., -1.682, -1.526, 2.361]]], dtype=float32)
Was it really useful for you, as a human, to see all these numbers?
What is the shape? The size?
What are the statistics?
Are any of the values `nan` or `inf`?
Is it an image of a man holding a tench?
``` python
import lovely_jax as lj
```
``` python
lj.monkey_patch()
```
## Summary
``` python
numbers
```
Array[196, 196, 3] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073 cpu:0
Better, huh?
``` python
numbers[1,:6,1] # Still shows values if there are not too many.
```
Array[6] x∈[-0.408, -0.232] μ=-0.340 σ=0.075 cpu:0 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]
``` python
spicy = numbers.flatten()[:12].copy()
spicy = (spicy .at[0].mul(10000)
.at[1].divide(10000)
.at[2].set(float('inf'))
.at[3].set(float('-inf'))
.at[4].set(float('nan'))
.reshape((2,6)))
spicy # Spicy stuff
```
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
``` python
jnp.zeros((10, 10)) # A zero array - make it obvious
```
Array[10, 10] n=100 all_zeros cpu:0
``` python
spicy.v # Verbose
```
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],
[-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)
``` python
spicy.p # The plain old way
```
Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],
[-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)
## Going `.deeper`
``` python
numbers.deeper
```
Array[196, 196, 3] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073 cpu:0
Array[196, 3] n=588 x∈[-1.912, 2.411] μ=-0.728 σ=0.519 cpu:0
Array[196, 3] n=588 x∈[-1.861, 2.359] μ=-0.778 σ=0.450 cpu:0
Array[196, 3] n=588 x∈[-1.758, 2.379] μ=-0.838 σ=0.437 cpu:0
Array[196, 3] n=588 x∈[-1.656, 2.466] μ=-0.878 σ=0.415 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.448] μ=-0.882 σ=0.399 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.431] μ=-0.905 σ=0.408 cpu:0
Array[196, 3] n=588 x∈[-1.563, 2.448] μ=-0.859 σ=0.416 cpu:0
Array[196, 3] n=588 x∈[-1.475, 2.431] μ=-0.791 σ=0.463 cpu:0
Array[196, 3] n=588 x∈[-1.526, 2.429] μ=-0.759 σ=0.499 cpu:0
...
``` python
# You can go deeper if you need to
numbers[:3,:5,:3].deeper(2)
```
Array[3, 5, 3] n=45 x∈[-1.316, -0.197] μ=-0.593 σ=0.302 cpu:0
Array[5, 3] n=15 x∈[-0.985, -0.197] μ=-0.491 σ=0.267 cpu:0
Array[3] x∈[-0.672, -0.197] μ=-0.408 σ=0.197 cpu:0 [-0.354, -0.197, -0.672]
Array[3] x∈[-0.985, -0.197] μ=-0.507 σ=0.343 cpu:0 [-0.337, -0.197, -0.985]
Array[3] x∈[-0.881, -0.303] μ=-0.530 σ=0.252 cpu:0 [-0.405, -0.303, -0.881]
Array[3] x∈[-0.776, -0.303] μ=-0.506 σ=0.199 cpu:0 [-0.440, -0.303, -0.776]
Array[3] x∈[-0.916, -0.215] μ=-0.506 σ=0.298 cpu:0 [-0.388, -0.215, -0.916]
Array[5, 3] n=15 x∈[-1.212, -0.232] μ=-0.609 σ=0.302 cpu:0
Array[3] x∈[-0.724, -0.250] μ=-0.460 σ=0.197 cpu:0 [-0.405, -0.250, -0.724]
Array[3] x∈[-1.072, -0.232] μ=-0.576 σ=0.360 cpu:0 [-0.423, -0.232, -1.072]
Array[3] x∈[-0.968, -0.338] μ=-0.599 σ=0.268 cpu:0 [-0.491, -0.338, -0.968]
Array[3] x∈[-0.968, -0.408] μ=-0.651 σ=0.235 cpu:0 [-0.577, -0.408, -0.968]
Array[3] x∈[-1.212, -0.408] μ=-0.761 σ=0.336 cpu:0 [-0.662, -0.408, -1.212]
Array[5, 3] n=15 x∈[-1.316, -0.285] μ=-0.677 σ=0.306 cpu:0
Array[3] x∈[-0.828, -0.303] μ=-0.535 σ=0.219 cpu:0 [-0.474, -0.303, -0.828]
Array[3] x∈[-1.125, -0.285] μ=-0.628 σ=0.360 cpu:0 [-0.474, -0.285, -1.125]
Array[3] x∈[-1.020, -0.390] μ=-0.651 σ=0.268 cpu:0 [-0.542, -0.390, -1.020]
Array[3] x∈[-1.003, -0.478] μ=-0.708 σ=0.219 cpu:0 [-0.645, -0.478, -1.003]
Array[3] x∈[-1.316, -0.513] μ=-0.865 σ=0.336 cpu:0 [-0.765, -0.513, -1.316]
## Now in `.rgb` color
The important queston - is it our man?
``` python
numbers.rgb
```
![](index_files/figure-commonmark/cell-13-output-1.png)
*Maaaaybe?* Looks like someone normalized him.
``` python
in_stats = ( (0.485, 0.456, 0.406), # mean
(0.229, 0.224, 0.225) ) # std
# numbers.rgb(in_stats, cl=True) # For channel-last input format
numbers.rgb(in_stats)
```
![](index_files/figure-commonmark/cell-14-output-1.png)
It’s indeed our hero, the Tenchman!
## `.plt` the statistics
``` python
(numbers+3).plt
```
![](index_files/figure-commonmark/cell-15-output-1.svg)
``` python
(numbers+3).plt(center="mean", max_s=1000)
```
![](index_files/figure-commonmark/cell-16-output-1.svg)
``` python
(numbers+3).plt(center="range")
```
![](index_files/figure-commonmark/cell-17-output-1.svg)
## See the `.chans`
``` python
# .chans will map values betwen [-1,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = jnp.array(in_stats[0])
std = jnp.array(in_stats[1])
numbers_01 = (numbers*std + mean)
numbers_01
```
Array[196, 196, 3] n=115248 (0.4Mb) x∈[0., 1.000] μ=0.361 σ=0.248 cpu:0
``` python
numbers_01.chans
```
![](index_files/figure-commonmark/cell-19-output-1.png)
## Grouping
``` python
# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (jnp.stack([numbers]*8) + jnp.linspace(-2, 2, 8)[:,None,None,None])
eight_images = (eight_images
*jnp.array(in_stats[1])
+jnp.array(in_stats[0])
).clip(0,1).reshape(2,2,2,196,196,3)
eight_images
```
Array[2, 2, 2, 196, 196, 3] n=921984 (3.5Mb) x∈[0., 1.000] μ=0.382 σ=0.319 cpu:0
``` python
eight_images.rgb
```
![](index_files/figure-commonmark/cell-21-output-1.png)
## Sharding
``` python
assert jax.__version_info__[0] == 0
if jax.__version_info__[1] >= 4:
from jax.sharding import PositionalSharding
from jax.experimental import mesh_utils
sharding = PositionalSharding(mesh_utils.create_device_mesh((4,2)))
x = jax.random.normal(jax.random.PRNGKey(0), (8192, 8192))
y = jax.device_put(x, sharding)
jax.debug.visualize_array_sharding(y)
else:
# Note: Looks like ShardedDeviceArray needs an explicit device axis?
x = jax.random.normal(jax.random.PRNGKey(0), (8, 1024, 8192))
y = jax.device_put_sharded([x for x in x], jax.devices())
print(x)
print(y)
```
<pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #393b79"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #d6616b"> </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #393b79"> CPU 0 </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #d6616b"> CPU 1 </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #393b79"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #d6616b"> </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #8ca252"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #de9ed6"> </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #8ca252"> CPU 2 </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #de9ed6"> CPU 3 </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #8ca252"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #de9ed6"> </span>
<span style="color: #000000; text-decoration-color: #000000; background-color: #e7cb94"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #6b6ecf"> </span>
<span style="color: #000000; text-decoration-color: #000000; background-color: #e7cb94"> CPU 4 </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #6b6ecf"> CPU 5 </span>
<span style="color: #000000; text-decoration-color: #000000; background-color: #e7cb94"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #6b6ecf"> </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #a55194"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #8c6d31"> </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #a55194"> CPU 6 </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #8c6d31"> CPU 7 </span>
<span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #a55194"> </span><span style="color: #ffffff; text-decoration-color: #ffffff; background-color: #8c6d31"> </span>
</pre>
Array[8192, 8192] n=67108864 (0.2Gb) x∈[-5.420, 5.220] μ=-0.000 σ=1.000 cpu:0
Array[8192, 8192] n=67108864 (0.2Gb) x∈[-5.420, 5.220] μ=-0.000 σ=1.000 cpu:0,1,2,3,4,5,6,7
## Options \| [Docs](utils.config.html)
``` python
from lovely_jax import set_config, config, lovely, get_config
```
``` python
set_config(precision=5, sci_mode=True, color=False)
jnp.array([1., 2, jnp.nan])
```
Array[3] μ=1.50000e+00 σ=5.00000e-01 NaN! cpu:0 [1.00000e+00, 2.00000e+00, nan]
``` python
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
```
``` python
print(jnp.array([1., 2]))
# Or with config context manager.
with config(sci_mode=True, precision=5):
print(jnp.array([1., 2]))
print(jnp.array([1., 2]))
```
Array[2] μ=1.500 σ=0.500 cpu:0 [1.000, 2.000]
Array[2] μ=1.50000e+00 σ=5.00000e-01 cpu:0 [1.00000e+00, 2.00000e+00]
Array[2] μ=1.500 σ=0.500 cpu:0 [1.000, 2.000]
## Without `.monkey_patch`
``` python
lj.lovely(spicy)
```
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
``` python
lj.lovely(spicy, verbose=True)
```
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],
[-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)
``` python
lj.lovely(numbers, depth=1)
```
Array[196, 196, 3] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073 cpu:0
Array[196, 3] n=588 x∈[-1.912, 2.411] μ=-0.728 σ=0.519 cpu:0
Array[196, 3] n=588 x∈[-1.861, 2.359] μ=-0.778 σ=0.450 cpu:0
Array[196, 3] n=588 x∈[-1.758, 2.379] μ=-0.838 σ=0.437 cpu:0
Array[196, 3] n=588 x∈[-1.656, 2.466] μ=-0.878 σ=0.415 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.448] μ=-0.882 σ=0.399 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.431] μ=-0.905 σ=0.408 cpu:0
Array[196, 3] n=588 x∈[-1.563, 2.448] μ=-0.859 σ=0.416 cpu:0
Array[196, 3] n=588 x∈[-1.475, 2.431] μ=-0.791 σ=0.463 cpu:0
Array[196, 3] n=588 x∈[-1.526, 2.429] μ=-0.759 σ=0.499 cpu:0
...
``` python
lj.rgb(numbers, in_stats)
```
![](index_files/figure-commonmark/cell-30-output-1.png)
``` python
lj.plot(numbers, center="mean")
```
![](index_files/figure-commonmark/cell-31-output-1.svg)
``` python
lj.chans(numbers_01)
```
![](index_files/figure-commonmark/cell-32-output-1.png)
## Matplotlib integration \| [Docs](matplotlib.html)
``` python
numbers.rgb(in_stats).fig # matplotlib figure
```
![](index_files/figure-commonmark/cell-33-output-1.png)
``` python
(numbers*0.3+0.5).chans.fig # matplotlib figure
```
![](index_files/figure-commonmark/cell-34-output-1.png)
``` python
numbers.plt.fig.savefig('pretty.svg') # Save it
```
``` python
!file pretty.svg; rm pretty.svg
```
pretty.svg: SVG Scalable Vector Graphics image
### Add content to existing Axes
``` python
fig = plt.figure(figsize=(8,3))
fig.set_constrained_layout(True)
gs = fig.add_gridspec(2,2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1,1:])
ax2.set_axis_off()
ax3.set_axis_off()
numbers_01.plt(ax=ax1)
numbers_01.rgb(ax=ax2)
numbers_01.chans(ax=ax3);
```
![](index_files/figure-commonmark/cell-37-output-1.png)
Raw data
{
"_id": null,
"home_page": "https://github.com/xl0/lovely-jax",
"name": "lovely-jax",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "nbdev jupyter jax",
"author": "Alexey Zaytsev",
"author_email": "alexey.zaytsev@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f2/3b/fa555a87e1f9ad96cab448f81e8b773e645e6183ad0acc27f0943e39c3a5/lovely-jax-0.1.3.tar.gz",
"platform": null,
"description": "# \ud83d\udc98 Lovely JAX\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## [Read full docs](https://xl0.github.io/lovely-jax) \\| \u2764\ufe0f [Lovely Tensors](https://github.com/xl0/lovely-tensors) \\| \ud83d\udc9f [Lovely `NumPy`](https://github.com/xl0/lovely-numpy) \\| [Discord](https://discord.gg/4NxRV7NH)\n\n## Note: I\u2019m pretty new to JAX\n\nIf something does not make sense, shoot me an\n[Issue](https://github.com/xl0/lovely-jax/issues) or ping me on Discord\nand let me know how it\u2019s supposed to work!\n\nBetter support for sharded arrays and solid jit/pmap/vmap support coming\nsoon!\n\n## Install\n\n``` sh\npip install lovely-jax\n```\n\n## How to use\n\nHow often do you find yourself debugging JAX code? You dump an array to\nthe cell output, and see this:\n\n``` python\nnumbers\n```\n\n Array([[[-0.354, -0.337, -0.405, ..., -0.56 , -0.474, 2.249],\n [-0.405, -0.423, -0.491, ..., -0.919, -0.851, 2.163],\n [-0.474, -0.474, -0.542, ..., -1.039, -1.039, 2.198],\n ...,\n [-0.902, -0.834, -0.936, ..., -1.467, -1.296, 2.232],\n [-0.851, -0.782, -0.936, ..., -1.604, -1.501, 2.18 ],\n [-0.834, -0.816, -0.971, ..., -1.656, -1.553, 2.112]],\n\n [[-0.197, -0.197, -0.303, ..., -0.478, -0.373, 2.411],\n [-0.25 , -0.232, -0.338, ..., -0.705, -0.67 , 2.359],\n [-0.303, -0.285, -0.39 , ..., -0.74 , -0.81 , 2.376],\n ...,\n [-0.425, -0.232, -0.373, ..., -1.09 , -1.02 , 2.429],\n [-0.39 , -0.232, -0.425, ..., -1.23 , -1.23 , 2.411],\n [-0.408, -0.285, -0.478, ..., -1.283, -1.283, 2.341]],\n\n [[-0.672, -0.985, -0.881, ..., -0.968, -0.689, 2.396],\n [-0.724, -1.072, -0.968, ..., -1.247, -1.02 , 2.326],\n [-0.828, -1.125, -1.02 , ..., -1.264, -1.16 , 2.379],\n ...,\n [-1.229, -1.473, -1.386, ..., -1.508, -1.264, 2.518],\n [-1.194, -1.456, -1.421, ..., -1.648, -1.473, 2.431],\n [-1.229, -1.526, -1.508, ..., -1.682, -1.526, 2.361]]], dtype=float32)\n\nWas it really useful for you, as a human, to see all these numbers?\n\nWhat is the shape? The size? \nWhat are the statistics? \nAre any of the values `nan` or `inf`? \nIs it an image of a man holding a tench?\n\n``` python\nimport lovely_jax as lj\n```\n\n``` python\nlj.monkey_patch()\n```\n\n## Summary\n\n``` python\nnumbers\n```\n\n Array[196, 196, 3] n=115248 (0.4Mb) x\u2208[-2.118, 2.640] \u03bc=-0.388 \u03c3=1.073 cpu:0\n\nBetter, huh?\n\n``` python\nnumbers[1,:6,1] # Still shows values if there are not too many.\n```\n\n Array[6] x\u2208[-0.408, -0.232] \u03bc=-0.340 \u03c3=0.075 cpu:0 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]\n\n``` python\nspicy = numbers.flatten()[:12].copy()\n\nspicy = (spicy .at[0].mul(10000)\n .at[1].divide(10000)\n .at[2].set(float('inf'))\n .at[3].set(float('-inf'))\n .at[4].set(float('nan'))\n .reshape((2,6)))\nspicy # Spicy stuff\n```\n\n Array[2, 6] n=12 x\u2208[-3.541e+03, -1.975e-05] \u03bc=-393.848 \u03c3=1.113e+03 +Inf! -Inf! NaN! cpu:0\n\n``` python\njnp.zeros((10, 10)) # A zero array - make it obvious\n```\n\n Array[10, 10] n=100 all_zeros cpu:0\n\n``` python\nspicy.v # Verbose\n```\n\n Array[2, 6] n=12 x\u2208[-3.541e+03, -1.975e-05] \u03bc=-393.848 \u03c3=1.113e+03 +Inf! -Inf! NaN! cpu:0\n Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],\n [-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)\n\n``` python\nspicy.p # The plain old way\n```\n\n Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],\n [-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)\n\n## Going `.deeper`\n\n``` python\nnumbers.deeper\n```\n\n Array[196, 196, 3] n=115248 (0.4Mb) x\u2208[-2.118, 2.640] \u03bc=-0.388 \u03c3=1.073 cpu:0\n Array[196, 3] n=588 x\u2208[-1.912, 2.411] \u03bc=-0.728 \u03c3=0.519 cpu:0\n Array[196, 3] n=588 x\u2208[-1.861, 2.359] \u03bc=-0.778 \u03c3=0.450 cpu:0\n Array[196, 3] n=588 x\u2208[-1.758, 2.379] \u03bc=-0.838 \u03c3=0.437 cpu:0\n Array[196, 3] n=588 x\u2208[-1.656, 2.466] \u03bc=-0.878 \u03c3=0.415 cpu:0\n Array[196, 3] n=588 x\u2208[-1.717, 2.448] \u03bc=-0.882 \u03c3=0.399 cpu:0\n Array[196, 3] n=588 x\u2208[-1.717, 2.431] \u03bc=-0.905 \u03c3=0.408 cpu:0\n Array[196, 3] n=588 x\u2208[-1.563, 2.448] \u03bc=-0.859 \u03c3=0.416 cpu:0\n Array[196, 3] n=588 x\u2208[-1.475, 2.431] \u03bc=-0.791 \u03c3=0.463 cpu:0\n Array[196, 3] n=588 x\u2208[-1.526, 2.429] \u03bc=-0.759 \u03c3=0.499 cpu:0\n ...\n\n``` python\n# You can go deeper if you need to\nnumbers[:3,:5,:3].deeper(2)\n```\n\n Array[3, 5, 3] n=45 x\u2208[-1.316, -0.197] \u03bc=-0.593 \u03c3=0.302 cpu:0\n Array[5, 3] n=15 x\u2208[-0.985, -0.197] \u03bc=-0.491 \u03c3=0.267 cpu:0\n Array[3] x\u2208[-0.672, -0.197] \u03bc=-0.408 \u03c3=0.197 cpu:0 [-0.354, -0.197, -0.672]\n Array[3] x\u2208[-0.985, -0.197] \u03bc=-0.507 \u03c3=0.343 cpu:0 [-0.337, -0.197, -0.985]\n Array[3] x\u2208[-0.881, -0.303] \u03bc=-0.530 \u03c3=0.252 cpu:0 [-0.405, -0.303, -0.881]\n Array[3] x\u2208[-0.776, -0.303] \u03bc=-0.506 \u03c3=0.199 cpu:0 [-0.440, -0.303, -0.776]\n Array[3] x\u2208[-0.916, -0.215] \u03bc=-0.506 \u03c3=0.298 cpu:0 [-0.388, -0.215, -0.916]\n Array[5, 3] n=15 x\u2208[-1.212, -0.232] \u03bc=-0.609 \u03c3=0.302 cpu:0\n Array[3] x\u2208[-0.724, -0.250] \u03bc=-0.460 \u03c3=0.197 cpu:0 [-0.405, -0.250, -0.724]\n Array[3] x\u2208[-1.072, -0.232] \u03bc=-0.576 \u03c3=0.360 cpu:0 [-0.423, -0.232, -1.072]\n Array[3] x\u2208[-0.968, -0.338] \u03bc=-0.599 \u03c3=0.268 cpu:0 [-0.491, -0.338, -0.968]\n Array[3] x\u2208[-0.968, -0.408] \u03bc=-0.651 \u03c3=0.235 cpu:0 [-0.577, -0.408, -0.968]\n Array[3] x\u2208[-1.212, -0.408] \u03bc=-0.761 \u03c3=0.336 cpu:0 [-0.662, -0.408, -1.212]\n Array[5, 3] n=15 x\u2208[-1.316, -0.285] \u03bc=-0.677 \u03c3=0.306 cpu:0\n Array[3] x\u2208[-0.828, -0.303] \u03bc=-0.535 \u03c3=0.219 cpu:0 [-0.474, -0.303, -0.828]\n Array[3] x\u2208[-1.125, -0.285] \u03bc=-0.628 \u03c3=0.360 cpu:0 [-0.474, -0.285, -1.125]\n Array[3] x\u2208[-1.020, -0.390] \u03bc=-0.651 \u03c3=0.268 cpu:0 [-0.542, -0.390, -1.020]\n Array[3] x\u2208[-1.003, -0.478] \u03bc=-0.708 \u03c3=0.219 cpu:0 [-0.645, -0.478, -1.003]\n Array[3] x\u2208[-1.316, -0.513] \u03bc=-0.865 \u03c3=0.336 cpu:0 [-0.765, -0.513, -1.316]\n\n## Now in `.rgb` color\n\nThe important queston - is it our man?\n\n``` python\nnumbers.rgb\n```\n\n![](index_files/figure-commonmark/cell-13-output-1.png)\n\n*Maaaaybe?* Looks like someone normalized him.\n\n``` python\nin_stats = ( (0.485, 0.456, 0.406), # mean \n (0.229, 0.224, 0.225) ) # std\n\n# numbers.rgb(in_stats, cl=True) # For channel-last input format\nnumbers.rgb(in_stats)\n```\n\n![](index_files/figure-commonmark/cell-14-output-1.png)\n\nIt\u2019s indeed our hero, the Tenchman!\n\n## `.plt` the statistics\n\n``` python\n(numbers+3).plt\n```\n\n![](index_files/figure-commonmark/cell-15-output-1.svg)\n\n``` python\n(numbers+3).plt(center=\"mean\", max_s=1000)\n```\n\n![](index_files/figure-commonmark/cell-16-output-1.svg)\n\n``` python\n(numbers+3).plt(center=\"range\")\n```\n\n![](index_files/figure-commonmark/cell-17-output-1.svg)\n\n## See the `.chans`\n\n``` python\n# .chans will map values betwen [-1,1] to colors.\n# Make our values fit into that range to avoid clipping.\nmean = jnp.array(in_stats[0])\nstd = jnp.array(in_stats[1])\nnumbers_01 = (numbers*std + mean)\nnumbers_01\n```\n\n Array[196, 196, 3] n=115248 (0.4Mb) x\u2208[0., 1.000] \u03bc=0.361 \u03c3=0.248 cpu:0\n\n``` python\nnumbers_01.chans\n```\n\n![](index_files/figure-commonmark/cell-19-output-1.png)\n\n## Grouping\n\n``` python\n# Make 8 images with progressively higher brightness and stack them 2x2x2.\neight_images = (jnp.stack([numbers]*8) + jnp.linspace(-2, 2, 8)[:,None,None,None])\neight_images = (eight_images\n *jnp.array(in_stats[1])\n +jnp.array(in_stats[0])\n ).clip(0,1).reshape(2,2,2,196,196,3)\n\neight_images\n```\n\n Array[2, 2, 2, 196, 196, 3] n=921984 (3.5Mb) x\u2208[0., 1.000] \u03bc=0.382 \u03c3=0.319 cpu:0\n\n``` python\neight_images.rgb\n```\n\n![](index_files/figure-commonmark/cell-21-output-1.png)\n\n## Sharding\n\n``` python\nassert jax.__version_info__[0] == 0\nif jax.__version_info__[1] >= 4:\n from jax.sharding import PositionalSharding\n from jax.experimental import mesh_utils\n sharding = PositionalSharding(mesh_utils.create_device_mesh((4,2)))\n x = jax.random.normal(jax.random.PRNGKey(0), (8192, 8192))\n y = jax.device_put(x, sharding)\n\n jax.debug.visualize_array_sharding(y)\nelse:\n # Note: Looks like ShardedDeviceArray needs an explicit device axis?\n x = jax.random.normal(jax.random.PRNGKey(0), (8, 1024, 8192))\n y = jax.device_put_sharded([x for x in x], jax.devices())\n\nprint(x)\nprint(y)\n```\n\n<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #393b79\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #d6616b\"> </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #393b79\"> CPU 0 </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #d6616b\"> CPU 1 </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #393b79\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #d6616b\"> </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #8ca252\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #de9ed6\"> </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #8ca252\"> CPU 2 </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #de9ed6\"> CPU 3 </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #8ca252\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #de9ed6\"> </span>\n<span style=\"color: #000000; text-decoration-color: #000000; background-color: #e7cb94\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #6b6ecf\"> </span>\n<span style=\"color: #000000; text-decoration-color: #000000; background-color: #e7cb94\"> CPU 4 </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #6b6ecf\"> CPU 5 </span>\n<span style=\"color: #000000; text-decoration-color: #000000; background-color: #e7cb94\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #6b6ecf\"> </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #a55194\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #8c6d31\"> </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #a55194\"> CPU 6 </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #8c6d31\"> CPU 7 </span>\n<span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #a55194\"> </span><span style=\"color: #ffffff; text-decoration-color: #ffffff; background-color: #8c6d31\"> </span>\n</pre>\n\n Array[8192, 8192] n=67108864 (0.2Gb) x\u2208[-5.420, 5.220] \u03bc=-0.000 \u03c3=1.000 cpu:0\n Array[8192, 8192] n=67108864 (0.2Gb) x\u2208[-5.420, 5.220] \u03bc=-0.000 \u03c3=1.000 cpu:0,1,2,3,4,5,6,7\n\n## Options \\| [Docs](utils.config.html)\n\n``` python\nfrom lovely_jax import set_config, config, lovely, get_config\n```\n\n``` python\nset_config(precision=5, sci_mode=True, color=False)\njnp.array([1., 2, jnp.nan])\n```\n\n Array[3] \u03bc=1.50000e+00 \u03c3=5.00000e-01 NaN! cpu:0 [1.00000e+00, 2.00000e+00, nan]\n\n``` python\nset_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults\n```\n\n``` python\nprint(jnp.array([1., 2]))\n# Or with config context manager.\nwith config(sci_mode=True, precision=5):\n print(jnp.array([1., 2]))\n\nprint(jnp.array([1., 2]))\n```\n\n Array[2] \u03bc=1.500 \u03c3=0.500 cpu:0 [1.000, 2.000]\n Array[2] \u03bc=1.50000e+00 \u03c3=5.00000e-01 cpu:0 [1.00000e+00, 2.00000e+00]\n Array[2] \u03bc=1.500 \u03c3=0.500 cpu:0 [1.000, 2.000]\n\n## Without `.monkey_patch`\n\n``` python\nlj.lovely(spicy)\n```\n\n Array[2, 6] n=12 x\u2208[-3.541e+03, -1.975e-05] \u03bc=-393.848 \u03c3=1.113e+03 +Inf! -Inf! NaN! cpu:0\n\n``` python\nlj.lovely(spicy, verbose=True)\n```\n\n Array[2, 6] n=12 x\u2208[-3.541e+03, -1.975e-05] \u03bc=-393.848 \u03c3=1.113e+03 +Inf! -Inf! NaN! cpu:0\n Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],\n [-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)\n\n``` python\nlj.lovely(numbers, depth=1)\n```\n\n Array[196, 196, 3] n=115248 (0.4Mb) x\u2208[-2.118, 2.640] \u03bc=-0.388 \u03c3=1.073 cpu:0\n Array[196, 3] n=588 x\u2208[-1.912, 2.411] \u03bc=-0.728 \u03c3=0.519 cpu:0\n Array[196, 3] n=588 x\u2208[-1.861, 2.359] \u03bc=-0.778 \u03c3=0.450 cpu:0\n Array[196, 3] n=588 x\u2208[-1.758, 2.379] \u03bc=-0.838 \u03c3=0.437 cpu:0\n Array[196, 3] n=588 x\u2208[-1.656, 2.466] \u03bc=-0.878 \u03c3=0.415 cpu:0\n Array[196, 3] n=588 x\u2208[-1.717, 2.448] \u03bc=-0.882 \u03c3=0.399 cpu:0\n Array[196, 3] n=588 x\u2208[-1.717, 2.431] \u03bc=-0.905 \u03c3=0.408 cpu:0\n Array[196, 3] n=588 x\u2208[-1.563, 2.448] \u03bc=-0.859 \u03c3=0.416 cpu:0\n Array[196, 3] n=588 x\u2208[-1.475, 2.431] \u03bc=-0.791 \u03c3=0.463 cpu:0\n Array[196, 3] n=588 x\u2208[-1.526, 2.429] \u03bc=-0.759 \u03c3=0.499 cpu:0\n ...\n\n``` python\nlj.rgb(numbers, in_stats)\n```\n\n![](index_files/figure-commonmark/cell-30-output-1.png)\n\n``` python\nlj.plot(numbers, center=\"mean\")\n```\n\n![](index_files/figure-commonmark/cell-31-output-1.svg)\n\n``` python\nlj.chans(numbers_01)\n```\n\n![](index_files/figure-commonmark/cell-32-output-1.png)\n\n## Matplotlib integration \\| [Docs](matplotlib.html)\n\n``` python\nnumbers.rgb(in_stats).fig # matplotlib figure\n```\n\n![](index_files/figure-commonmark/cell-33-output-1.png)\n\n``` python\n(numbers*0.3+0.5).chans.fig # matplotlib figure\n```\n\n![](index_files/figure-commonmark/cell-34-output-1.png)\n\n``` python\nnumbers.plt.fig.savefig('pretty.svg') # Save it\n```\n\n``` python\n!file pretty.svg; rm pretty.svg\n```\n\n pretty.svg: SVG Scalable Vector Graphics image\n\n### Add content to existing Axes\n\n``` python\nfig = plt.figure(figsize=(8,3))\nfig.set_constrained_layout(True)\ngs = fig.add_gridspec(2,2)\nax1 = fig.add_subplot(gs[0, :])\nax2 = fig.add_subplot(gs[1, 0])\nax3 = fig.add_subplot(gs[1,1:])\n\nax2.set_axis_off()\nax3.set_axis_off()\n\nnumbers_01.plt(ax=ax1)\nnumbers_01.rgb(ax=ax2)\nnumbers_01.chans(ax=ax3);\n```\n\n![](index_files/figure-commonmark/cell-37-output-1.png)\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "\ud83d\udc98 Lovely JAX",
"version": "0.1.3",
"project_urls": {
"Homepage": "https://github.com/xl0/lovely-jax"
},
"split_keywords": [
"nbdev",
"jupyter",
"jax"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "439e201612808489798b6b4937d5f78598f271897edf7539338a12c98d914aa8",
"md5": "91a69b26daba5d85819ec3328a44e175",
"sha256": "453f0fc5ab3f35bd32a0e663728b2ef6f8c0f81cbc7e0d4f979426c2c84045b7"
},
"downloads": -1,
"filename": "lovely_jax-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "91a69b26daba5d85819ec3328a44e175",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 17980,
"upload_time": "2023-09-18T06:59:09",
"upload_time_iso_8601": "2023-09-18T06:59:09.100982Z",
"url": "https://files.pythonhosted.org/packages/43/9e/201612808489798b6b4937d5f78598f271897edf7539338a12c98d914aa8/lovely_jax-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f23bfa555a87e1f9ad96cab448f81e8b773e645e6183ad0acc27f0943e39c3a5",
"md5": "a57f857f664e07973e519c75fe7106cd",
"sha256": "43b1c44bf072de3a878873fcd041dd309f44974f6cca158dffb823e563297d1a"
},
"downloads": -1,
"filename": "lovely-jax-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "a57f857f664e07973e519c75fe7106cd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 19718,
"upload_time": "2023-09-18T06:59:11",
"upload_time_iso_8601": "2023-09-18T06:59:11.768888Z",
"url": "https://files.pythonhosted.org/packages/f2/3b/fa555a87e1f9ad96cab448f81e8b773e645e6183ad0acc27f0943e39c3a5/lovely-jax-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-18 06:59:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "xl0",
"github_project": "lovely-jax",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "lovely-jax"
}