# lull
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Developer Guide
### Setup
``` sh
# create conda environment
$ mamba env create -f env.yml
# update conda environment
$ mamba env update -n lull --file env.yml
```
### Install
``` sh
pip install -e .
# install from pypi
pip install lull
```
### nbdev
``` sh
# activate conda environment
$ conda activate lull
# make sure the lull package is installed in development mode
$ pip install -e .
# make changes under nbs/ directory
# ...
# compile to have changes apply to the lull package
$ nbdev_prepare
```
### Publishing
``` sh
# publish to pypi
$ nbdev_pypi
# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'
```
# Usage
## Installation
Install latest from the GitHub
[repository](https://github.com/dsm-72/lull):
``` sh
$ pip install git+https://github.com/dsm-72/lull.git
```
or from [conda](https://anaconda.org/dsm-72/lull)
``` sh
$ conda install -c dsm-72 lull
```
or from [pypi](https://pypi.org/project/lull/)
``` sh
$ pip install lull
```
## Documentation
Documentation can be found hosted on GitHub
[repository](https://github.com/dsm-72/lull)
[pages](https://dsm-72.github.io/lull/). Additionally you can find
package manager specific guidelines on
[conda](https://anaconda.org/dsm-72/lull) and
[pypi](https://pypi.org/project/lull/) respectively.
## PyTorch Documentation:
- [`TorchData`](https://pytorch.org/data/beta/index.html)
- [How to Package PyTorch
Models](https://pytorch.org/docs/stable/package.html)
- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)
- [`torchvision`](https://pytorch.org/vision/stable/index.html)
- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)
- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)
## PyTorch Models to Consider:
- [Diffusion Video
AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)
- [ConvLSTM
AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)
- [Recurrent All Pairs Field Transforms for Optical
Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)
- [Optical Flow Toolbox
(`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)
- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)
Raw data
{
"_id": null,
"home_page": "https://github.com/dsm-72/lull",
"name": "lull",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "lull hush shush quiet",
"author": "dsm-72",
"author_email": "sumner.magruder@yale.edu",
"download_url": "https://files.pythonhosted.org/packages/83/ec/9f82460a9d948bed6767cd7b3e4bde9c607253fc761778120728aa06527c/lull-0.0.1.tar.gz",
"platform": null,
"description": "# lull\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Developer Guide\n\n### Setup\n\n``` sh\n# create conda environment\n$ mamba env create -f env.yml\n\n# update conda environment\n$ mamba env update -n lull --file env.yml\n```\n\n### Install\n\n``` sh\npip install -e .\n\n# install from pypi\npip install lull\n```\n\n### nbdev\n\n``` sh\n# activate conda environment\n$ conda activate lull\n\n# make sure the lull package is installed in development mode\n$ pip install -e .\n\n# make changes under nbs/ directory\n# ...\n\n# compile to have changes apply to the lull package\n$ nbdev_prepare\n```\n\n### Publishing\n\n``` sh\n# publish to pypi\n$ nbdev_pypi\n\n# publish to conda\n$ nbdev_conda --build_args '-c conda-forge'\n$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'\n```\n\n# Usage\n\n## Installation\n\nInstall latest from the GitHub\n[repository](https://github.com/dsm-72/lull):\n\n``` sh\n$ pip install git+https://github.com/dsm-72/lull.git\n```\n\nor from [conda](https://anaconda.org/dsm-72/lull)\n\n``` sh\n$ conda install -c dsm-72 lull\n```\n\nor from [pypi](https://pypi.org/project/lull/)\n\n``` sh\n$ pip install lull\n```\n\n## Documentation\n\nDocumentation can be found hosted on GitHub\n[repository](https://github.com/dsm-72/lull)\n[pages](https://dsm-72.github.io/lull/). Additionally you can find\npackage manager specific guidelines on\n[conda](https://anaconda.org/dsm-72/lull) and\n[pypi](https://pypi.org/project/lull/) respectively.\n\n## PyTorch Documentation:\n\n- [`TorchData`](https://pytorch.org/data/beta/index.html)\n- [How to Package PyTorch\n Models](https://pytorch.org/docs/stable/package.html)\n- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)\n- [`torchvision`](https://pytorch.org/vision/stable/index.html)\n- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)\n- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)\n\n## PyTorch Models to Consider:\n\n- [Diffusion Video\n AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)\n- [ConvLSTM\n AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)\n- [Recurrent All Pairs Field Transforms for Optical\n Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)\n- [Optical Flow Toolbox\n (`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)\n- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "Package for the lulling all output",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/dsm-72/lull"
},
"split_keywords": [
"lull",
"hush",
"shush",
"quiet"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f533f2c895e4cecb3d19a208983d4e6d7d5d2cc1b7b20f221222bc35b6043c2f",
"md5": "ef7b2f653203aa5f5cf43e19197cd618",
"sha256": "521b4b0f922de2f51e64fc162e3dac3737235e9d58b9d895623d86bc18c9bfd7"
},
"downloads": -1,
"filename": "lull-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ef7b2f653203aa5f5cf43e19197cd618",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 8328,
"upload_time": "2023-12-06T15:23:59",
"upload_time_iso_8601": "2023-12-06T15:23:59.306838Z",
"url": "https://files.pythonhosted.org/packages/f5/33/f2c895e4cecb3d19a208983d4e6d7d5d2cc1b7b20f221222bc35b6043c2f/lull-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "83ec9f82460a9d948bed6767cd7b3e4bde9c607253fc761778120728aa06527c",
"md5": "65288bfb7bcb15aa5fc67f03cf240b84",
"sha256": "f467dcbd88e0c54b1baf8afd8f90828f98b7486cf9f9867f4178150a8e441b07"
},
"downloads": -1,
"filename": "lull-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "65288bfb7bcb15aa5fc67f03cf240b84",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 8865,
"upload_time": "2023-12-06T15:24:02",
"upload_time_iso_8601": "2023-12-06T15:24:02.115006Z",
"url": "https://files.pythonhosted.org/packages/83/ec/9f82460a9d948bed6767cd7b3e4bde9c607253fc761778120728aa06527c/lull-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-06 15:24:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dsm-72",
"github_project": "lull",
"github_not_found": true,
"lcname": "lull"
}