maadsbml


Namemaadsbml JSON
Version 1.3.19 PyPI version JSON
download
home_pagehttps://github.com/smaurice101/acnsmauricedsmas
SummaryMulti-Agent Accelerator for Data Science (MAADS) Batch AutoML (MAADSBML)
upload_time2024-10-08 01:42:39
maintainerNone
docs_urlNone
authorSebastian Maurice
requires_pythonNone
licenseMIT License
keywords multi-agent data science batch automl optimization prescriptive analytics machine learning automl auto-ml artificial intelligence predictive analytics advanced analytics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            **Multi-Agent Accelerator for Data Science: Batch AutoML (MAADSBML)

*Revolutionizing Data Science with Artificial Intelligence*

**Overview**

*MAADSBML combines Artificial Intelligence, Docker, Machine Learning.  It automates the machine learning process, and finds the BEST algorithm for your data.  It also
produces a very detailed PDF report.  MAADSBML is integrated with Docker Container.
 
This library allows users to harness the power of agent-based computing using hundreds of advanced linear and non-linear algorithms. 

FOR MORE INFORMATION GO TO:  https://maadsbml.readthedocs.io/en/latest/

**Compatibility**
    - Python 3.8 or greater
    - Minimal Python skills needed

**Copyright**
   - Author: Sebastian Maurice, PhD

**Installation**
   - At the command prompt write:
     **pip install maadsbml**
     - This assumes you have [Downloaded Python](https://www.python.org/downloads/) and installed it on your computer.  
	 - You will also need to pull the MAADSBML Docker container:  **maadsdocker/maads-batch-automl-otics**

**Syntax**
  - There are literally two lines of code you need to write to train your data and make predictions:

**Main functions:**
   - **hypertraining**
     Executes hundreds of agents, running hundreds of advanced algorithms and completes in minutes.  A master agent then chooses the BEST algorithm that best  models your data.
   - **hyperpredictions**
     After training, make high quality predictions - takes less than half a second (about ~100 milliseconds). Users can also generate predictions using **non-python code** 
	 such as JAVA.  	 
   - **algodescription**
     Get detailed information on the optimal algorithm found during hypertraining
   - **abort**
     Abort the training process.
   - **rundemo**
     To run canned demo of the system to see how it works.
   - **finddistribution**
     Finds the best distribution for your continuous data
	 
**First import the Python library.**

**import maadsbml**

1. **maadsbml.hypertraining(host,port,filename,dependentvariable,removeoutliers=0,hasseasonality=0,summer='6,7,8',winter='11,12,1,2',shoulder='3,4,5,9,10',
       trainingpercentage=70,shuffle=0,deepanalysis=0,username='admin',timeout=1200,company='otics',password='123',email='support@otics.ca',usereverseproxy=0,
       microserviceid='',maadstoken='123',mode=0)**

**Parameters:**	

*host* : string, required

- This is the IP address of the running Docker container - it is usually http://localhost

*port* : int, required

- This is the TRAINING PORT in the container. The default is port==5595

*filename* : string, required
 
 - This is the raw data file in csv format - Note this file is stored on your host machine - the DOCKER container needs to be mapped to this volume using -v

*dependentvariable* : string, required

- This is the dependent variable in your csv file.

*removeoutliers* : int, optional, 1 or 0

- If 1, then outliers will be removed from your data.  If 0, no outliers are removed.

*hasseasonality* : int, optional, 1 or 0
      
- If 1, then your data will be modeled for seasonality: Winter, Summer, Shoulder. If 0, then your data will 
  not be modeled for seasonality.  If modeling for seasonality, ensure you have enough data points that 
  covers the seasons, usually 1 year of data.
       
*summer* : string, optional
       
- Definition for summer months.  This can be changed.

*winter* : string, optional
       
- Definition for winter months.  This can be changed.

*shoulder* : string, optional
       
- Definition for shoulder months.  This can be changed.

*trainingpercentage* : int, optional, Default=70
       
- This is the split percentage between Training and Test data sets.   It is defaulted to 70 (70% for training, 30% test).

*shuffle* : number, 0 or 1, optional

- Indicates whether to shuffle the training dataset or not, default=0.

*deepanalysis* : int, optional

- This will force MAADSBML to perform deeper analysis on your data.  This could take 30-40 minutes.  Set to 1 for deepanalysis, 0 for no deep analysis.

*username* : string, optional
 
 - This identifies a user.  You may want to change this if multiple users are running the same file.

*company* : string, optional
 
 - This identifies your company. You may want to change this for the Report.

*timeout* : int, optional

- You can increase this if you receive a timeout error before the training is taking too long. The setting is in seconds.

*password* : string, optional 

 - leave as is

*email* : string, optional 

 - leave as is
 
*usereverseproxy* : int, optional

- leave as is
 
*microserviceid* : string, optional

- leave as is if not using a pass through service.

*mode* : int, optional

- leave as is

*maadstoken* : string, optional

- leave as is

**Returns:** string JSON buffer, with the algorithm key (PKEY) and other details:
        
- PKEY: : This is the key to the BEST algorithm and must be used when making predictions.
			
**2. maadsbml.hyperpredictions(pkey,theinputdata,host,port,username,algoname='',seasonname='',usereverseproxy=0,microserviceid='',password='123',company='otics',
       email='support@otics.ca',maadstoken='123')**

**Parameters:**	

*pkey* : string, required

- This is the PKEY you received from the hypertraining function.

*theinputdata* : string, required

- These are the Xs for your model: For example if my model had 3 Xs then inputdata='5/21/2010,-14.3,-32.0,-12.0', with the first entry as Date: Date 
must be in the format: MM/DD/YYYY

*host* : string, required

- This is the IP address of the running Docker container - it is usually http://localhost

*port* : int, required

- This is the PREDICTION PORT in the container. The default is port==5495 (or 5595)

*username* : string, required

- The username you used in the hypertraining functions. Default is admin.

*algoname* : string, optional

- Enter the name of the algorithm to use, this can be retrieved from the hypertraining function.  If this is empty, the BEST algorithm will be used by default.

*seasonname* : string, optional

- Enter the season to use (winter,summer,shoulder), this can be retrieved from the hypertraining function.  If this is empty, the default season is used.

*usereverseproxy* : int, optional

- leave as is

*microserviceid* : int, optional

- leave as is

*password* : string, optional

- leave as is

*company* : string, optional

- change for reporting.

*email* : string, optional

- leave as is

*maadstoken* : string, optional

- leave as is
	 
**Returns:** string buffer containing the prediction, and other details.
        

**3. maadsbml.abort(host,port=10000)**

**Parameters:**	

*host* : string, required

- This is the IP address of the Docker container: http://localhost
     
*port* : string, optional
      
- Port is fixed at 10000

**Returns:** Abort will shutdown and re-start your system.
        
  
**4. maadsbml.rundemo(host,port,demotype=1,timeout=1200,usereverseproxy=0,microserviceid='')**

**Parameters:**	

*host* : string, required

- This is the IP address of the Docker container: http://localhost
     
*port* : string, required
      
- This is the TRAININGPORT, it is usually 5595.

*demotype* : int, required

- If demotype is 1, then a regression models is run; if demotype is 0 then a classification model is run.

*timeout* : int, optional

- The connection timeout between Python and the container, in seconds

*usereverseproxy* : int, optional

- leave as is 

*microserviceid* : string, optional

- leave as is
        
**Returns:** null
        
 
**5. maadsbml.algodescription(host,port,pkey,timeout=300,usereverseproxy=0,microserviceid='')**

**Parameters:**	

*host* : string, required

- This is the IP address of the Docker container: http://localhost
     
*port* : string, required
      
- This is the TRAININGPORT, it is usually 5595.

*pkey* : string, required

- This is the PKEY from hypertraining.

*timeout* : int, optional

- The connection timeout between Python and the container, in seconds

*usereverseproxy* : int, optional

- leave as is 

*microserviceid* : string, optional

- leave as is
        
**Returns:** null
        
 
**6. maadsbml.finddistribution(filename,varname,dataarray=[],folderpath='',imgname='distimage',common=1,topdist=5)**

**Parameters:**	

*filename* : string, required

- Filename containing the raw data.  This must be a CSV file.
     
*varname* : string, required
      
- Name of the variable for your data.

*dataarray* : array_like, optional

- Numpy array.  Rather than pass a filename, you can pass in an array.

*folderpath* : string, optional

- Folder path to store the output data, and distribution image file.

*imgname* : string, optional

- Name of the image and json data.

*common* : int, optional

- If set to 1, this will apply common distributions to your data. 
 
  If Set to 0, it will iterate through roughly 80 distributions.

*topdist* : int, optional

- The number of the TOP distributions to print.
        
**Returns:** status,dist dataframe,name of best distribution,all JSON data
       

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/smaurice101/acnsmauricedsmas",
    "name": "maadsbml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "multi-agent, data science, batch automl, optimization, prescriptive analytics, machine learning, automl, auto-ml, artificial intelligence, predictive analytics, advanced analytics",
    "author": "Sebastian Maurice",
    "author_email": "sebastian.maurice@otics.ca",
    "download_url": "https://files.pythonhosted.org/packages/bd/43/550970a78bc83d274de5aca3729f5d87bfee665d33ca4e6f61b0f25dfb4e/maadsbml-1.3.19.tar.gz",
    "platform": null,
    "description": "**Multi-Agent Accelerator for Data Science: Batch AutoML (MAADSBML)\r\n\r\n*Revolutionizing Data Science with Artificial Intelligence*\r\n\r\n**Overview**\r\n\r\n*MAADSBML combines Artificial Intelligence, Docker, Machine Learning.  It automates the machine learning process, and finds the BEST algorithm for your data.  It also\r\nproduces a very detailed PDF report.  MAADSBML is integrated with Docker Container.\r\n \r\nThis library allows users to harness the power of agent-based computing using hundreds of advanced linear and non-linear algorithms. \r\n\r\nFOR MORE INFORMATION GO TO:  https://maadsbml.readthedocs.io/en/latest/\r\n\r\n**Compatibility**\r\n    - Python 3.8 or greater\r\n    - Minimal Python skills needed\r\n\r\n**Copyright**\r\n   - Author: Sebastian Maurice, PhD\r\n\r\n**Installation**\r\n   - At the command prompt write:\r\n     **pip install maadsbml**\r\n     - This assumes you have [Downloaded Python](https://www.python.org/downloads/) and installed it on your computer.  \r\n\t - You will also need to pull the MAADSBML Docker container:  **maadsdocker/maads-batch-automl-otics**\r\n\r\n**Syntax**\r\n  - There are literally two lines of code you need to write to train your data and make predictions:\r\n\r\n**Main functions:**\r\n   - **hypertraining**\r\n     Executes hundreds of agents, running hundreds of advanced algorithms and completes in minutes.  A master agent then chooses the BEST algorithm that best  models your data.\r\n   - **hyperpredictions**\r\n     After training, make high quality predictions - takes less than half a second (about ~100 milliseconds). Users can also generate predictions using **non-python code** \r\n\t such as JAVA.  \t \r\n   - **algodescription**\r\n     Get detailed information on the optimal algorithm found during hypertraining\r\n   - **abort**\r\n     Abort the training process.\r\n   - **rundemo**\r\n     To run canned demo of the system to see how it works.\r\n   - **finddistribution**\r\n     Finds the best distribution for your continuous data\r\n\t \r\n**First import the Python library.**\r\n\r\n**import maadsbml**\r\n\r\n1. **maadsbml.hypertraining(host,port,filename,dependentvariable,removeoutliers=0,hasseasonality=0,summer='6,7,8',winter='11,12,1,2',shoulder='3,4,5,9,10',\r\n       trainingpercentage=70,shuffle=0,deepanalysis=0,username='admin',timeout=1200,company='otics',password='123',email='support@otics.ca',usereverseproxy=0,\r\n       microserviceid='',maadstoken='123',mode=0)**\r\n\r\n**Parameters:**\t\r\n\r\n*host* : string, required\r\n\r\n- This is the IP address of the running Docker container - it is usually http://localhost\r\n\r\n*port* : int, required\r\n\r\n- This is the TRAINING PORT in the container. The default is port==5595\r\n\r\n*filename* : string, required\r\n \r\n - This is the raw data file in csv format - Note this file is stored on your host machine - the DOCKER container needs to be mapped to this volume using -v\r\n\r\n*dependentvariable* : string, required\r\n\r\n- This is the dependent variable in your csv file.\r\n\r\n*removeoutliers* : int, optional, 1 or 0\r\n\r\n- If 1, then outliers will be removed from your data.  If 0, no outliers are removed.\r\n\r\n*hasseasonality* : int, optional, 1 or 0\r\n      \r\n- If 1, then your data will be modeled for seasonality: Winter, Summer, Shoulder. If 0, then your data will \r\n  not be modeled for seasonality.  If modeling for seasonality, ensure you have enough data points that \r\n  covers the seasons, usually 1 year of data.\r\n       \r\n*summer* : string, optional\r\n       \r\n- Definition for summer months.  This can be changed.\r\n\r\n*winter* : string, optional\r\n       \r\n- Definition for winter months.  This can be changed.\r\n\r\n*shoulder* : string, optional\r\n       \r\n- Definition for shoulder months.  This can be changed.\r\n\r\n*trainingpercentage* : int, optional, Default=70\r\n       \r\n- This is the split percentage between Training and Test data sets.   It is defaulted to 70 (70% for training, 30% test).\r\n\r\n*shuffle* : number, 0 or 1, optional\r\n\r\n- Indicates whether to shuffle the training dataset or not, default=0.\r\n\r\n*deepanalysis* : int, optional\r\n\r\n- This will force MAADSBML to perform deeper analysis on your data.  This could take 30-40 minutes.  Set to 1 for deepanalysis, 0 for no deep analysis.\r\n\r\n*username* : string, optional\r\n \r\n - This identifies a user.  You may want to change this if multiple users are running the same file.\r\n\r\n*company* : string, optional\r\n \r\n - This identifies your company. You may want to change this for the Report.\r\n\r\n*timeout* : int, optional\r\n\r\n- You can increase this if you receive a timeout error before the training is taking too long. The setting is in seconds.\r\n\r\n*password* : string, optional \r\n\r\n - leave as is\r\n\r\n*email* : string, optional \r\n\r\n - leave as is\r\n \r\n*usereverseproxy* : int, optional\r\n\r\n- leave as is\r\n \r\n*microserviceid* : string, optional\r\n\r\n- leave as is if not using a pass through service.\r\n\r\n*mode* : int, optional\r\n\r\n- leave as is\r\n\r\n*maadstoken* : string, optional\r\n\r\n- leave as is\r\n\r\n**Returns:** string JSON buffer, with the algorithm key (PKEY) and other details:\r\n        \r\n- PKEY: : This is the key to the BEST algorithm and must be used when making predictions.\r\n\t\t\t\r\n**2. maadsbml.hyperpredictions(pkey,theinputdata,host,port,username,algoname='',seasonname='',usereverseproxy=0,microserviceid='',password='123',company='otics',\r\n       email='support@otics.ca',maadstoken='123')**\r\n\r\n**Parameters:**\t\r\n\r\n*pkey* : string, required\r\n\r\n- This is the PKEY you received from the hypertraining function.\r\n\r\n*theinputdata* : string, required\r\n\r\n- These are the Xs for your model: For example if my model had 3 Xs then inputdata='5/21/2010,-14.3,-32.0,-12.0', with the first entry as Date: Date \r\nmust be in the format: MM/DD/YYYY\r\n\r\n*host* : string, required\r\n\r\n- This is the IP address of the running Docker container - it is usually http://localhost\r\n\r\n*port* : int, required\r\n\r\n- This is the PREDICTION PORT in the container. The default is port==5495 (or 5595)\r\n\r\n*username* : string, required\r\n\r\n- The username you used in the hypertraining functions. Default is admin.\r\n\r\n*algoname* : string, optional\r\n\r\n- Enter the name of the algorithm to use, this can be retrieved from the hypertraining function.  If this is empty, the BEST algorithm will be used by default.\r\n\r\n*seasonname* : string, optional\r\n\r\n- Enter the season to use (winter,summer,shoulder), this can be retrieved from the hypertraining function.  If this is empty, the default season is used.\r\n\r\n*usereverseproxy* : int, optional\r\n\r\n- leave as is\r\n\r\n*microserviceid* : int, optional\r\n\r\n- leave as is\r\n\r\n*password* : string, optional\r\n\r\n- leave as is\r\n\r\n*company* : string, optional\r\n\r\n- change for reporting.\r\n\r\n*email* : string, optional\r\n\r\n- leave as is\r\n\r\n*maadstoken* : string, optional\r\n\r\n- leave as is\r\n\t \r\n**Returns:** string buffer containing the prediction, and other details.\r\n        \r\n\r\n**3. maadsbml.abort(host,port=10000)**\r\n\r\n**Parameters:**\t\r\n\r\n*host* : string, required\r\n\r\n- This is the IP address of the Docker container: http://localhost\r\n     \r\n*port* : string, optional\r\n      \r\n- Port is fixed at 10000\r\n\r\n**Returns:** Abort will shutdown and re-start your system.\r\n        \r\n  \r\n**4. maadsbml.rundemo(host,port,demotype=1,timeout=1200,usereverseproxy=0,microserviceid='')**\r\n\r\n**Parameters:**\t\r\n\r\n*host* : string, required\r\n\r\n- This is the IP address of the Docker container: http://localhost\r\n     \r\n*port* : string, required\r\n      \r\n- This is the TRAININGPORT, it is usually 5595.\r\n\r\n*demotype* : int, required\r\n\r\n- If demotype is 1, then a regression models is run; if demotype is 0 then a classification model is run.\r\n\r\n*timeout* : int, optional\r\n\r\n- The connection timeout between Python and the container, in seconds\r\n\r\n*usereverseproxy* : int, optional\r\n\r\n- leave as is \r\n\r\n*microserviceid* : string, optional\r\n\r\n- leave as is\r\n        \r\n**Returns:** null\r\n        \r\n \r\n**5. maadsbml.algodescription(host,port,pkey,timeout=300,usereverseproxy=0,microserviceid='')**\r\n\r\n**Parameters:**\t\r\n\r\n*host* : string, required\r\n\r\n- This is the IP address of the Docker container: http://localhost\r\n     \r\n*port* : string, required\r\n      \r\n- This is the TRAININGPORT, it is usually 5595.\r\n\r\n*pkey* : string, required\r\n\r\n- This is the PKEY from hypertraining.\r\n\r\n*timeout* : int, optional\r\n\r\n- The connection timeout between Python and the container, in seconds\r\n\r\n*usereverseproxy* : int, optional\r\n\r\n- leave as is \r\n\r\n*microserviceid* : string, optional\r\n\r\n- leave as is\r\n        \r\n**Returns:** null\r\n        \r\n \r\n**6. maadsbml.finddistribution(filename,varname,dataarray=[],folderpath='',imgname='distimage',common=1,topdist=5)**\r\n\r\n**Parameters:**\t\r\n\r\n*filename* : string, required\r\n\r\n- Filename containing the raw data.  This must be a CSV file.\r\n     \r\n*varname* : string, required\r\n      \r\n- Name of the variable for your data.\r\n\r\n*dataarray* : array_like, optional\r\n\r\n- Numpy array.  Rather than pass a filename, you can pass in an array.\r\n\r\n*folderpath* : string, optional\r\n\r\n- Folder path to store the output data, and distribution image file.\r\n\r\n*imgname* : string, optional\r\n\r\n- Name of the image and json data.\r\n\r\n*common* : int, optional\r\n\r\n- If set to 1, this will apply common distributions to your data. \r\n \r\n  If Set to 0, it will iterate through roughly 80 distributions.\r\n\r\n*topdist* : int, optional\r\n\r\n- The number of the TOP distributions to print.\r\n        \r\n**Returns:** status,dist dataframe,name of best distribution,all JSON data\r\n       \r\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Multi-Agent Accelerator for Data Science (MAADS) Batch AutoML (MAADSBML)",
    "version": "1.3.19",
    "project_urls": {
        "Homepage": "https://github.com/smaurice101/acnsmauricedsmas"
    },
    "split_keywords": [
        "multi-agent",
        " data science",
        " batch automl",
        " optimization",
        " prescriptive analytics",
        " machine learning",
        " automl",
        " auto-ml",
        " artificial intelligence",
        " predictive analytics",
        " advanced analytics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1f6666c6ef221725c822c74aa0aa439b69e6fd59e2bb8f9edc353b284a02b79d",
                "md5": "e40e58491ac34d8c7e1fdc414af40c09",
                "sha256": "64724b5689d0667bddb90c55f5b2e93e2471488e67056a42372d0d437a51f58a"
            },
            "downloads": -1,
            "filename": "maadsbml-1.3.19-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e40e58491ac34d8c7e1fdc414af40c09",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 13850,
            "upload_time": "2024-10-08T01:42:37",
            "upload_time_iso_8601": "2024-10-08T01:42:37.642912Z",
            "url": "https://files.pythonhosted.org/packages/1f/66/66c6ef221725c822c74aa0aa439b69e6fd59e2bb8f9edc353b284a02b79d/maadsbml-1.3.19-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd43550970a78bc83d274de5aca3729f5d87bfee665d33ca4e6f61b0f25dfb4e",
                "md5": "056c44bfb69556e654a4b9db59927e69",
                "sha256": "587478a9b5dff9d0f46b8d74ea82ac2554e7e52c522e03c549d20a56d2c4f1b4"
            },
            "downloads": -1,
            "filename": "maadsbml-1.3.19.tar.gz",
            "has_sig": false,
            "md5_digest": "056c44bfb69556e654a4b9db59927e69",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15992,
            "upload_time": "2024-10-08T01:42:39",
            "upload_time_iso_8601": "2024-10-08T01:42:39.215545Z",
            "url": "https://files.pythonhosted.org/packages/bd/43/550970a78bc83d274de5aca3729f5d87bfee665d33ca4e6f61b0f25dfb4e/maadsbml-1.3.19.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-08 01:42:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "smaurice101",
    "github_project": "acnsmauricedsmas",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "maadsbml"
}
        
Elapsed time: 1.25837s