# Mahotas
## Python Computer Vision Library
Mahotas is a library of fast computer vision algorithms (all implemented
in C++ for speed) operating over numpy arrays.

[](https://coveralls.io/github/luispedro/mahotas?branch=master)
[](https://opensource.org/licenses/MIT)
[](https://pepy.tech/project/mahotas/month)
[](https://anaconda.org/conda-forge/mahotas)
[](https://anaconda.org/conda-forge/mahotas)
Python versions 2.7, 3.4+, are supported.
Notable algorithms:
- [watershed](https://mahotas.readthedocs.io/en/latest/distance.html)
- [convex points calculations](https://mahotas.readthedocs.io/en/latest/polygon.html).
- hit & miss, thinning.
- Zernike & Haralick, LBP, and TAS features.
- [Speeded-Up Robust Features
(SURF)](https://mahotas.readthedocs.io/en/latest/surf.html), a form of local
features.
- [thresholding](https://mahotas.readthedocs.io/en/latest/thresholding.html).
- convolution.
- Sobel edge detection.
- spline interpolation
- SLIC super pixels.
Mahotas currently has over 100 functions for image processing and
computer vision and it keeps growing.
The release schedule is roughly one release a month and each release
brings new functionality and improved performance. The interface is very
stable, though, and code written using a version of mahotas from years
back will work just fine in the current version, except it will be
faster (some interfaces are deprecated and will be removed after a few
years, but in the meanwhile, you only get a warning). In a few
unfortunate cases, there was a bug in the old code and your results will
change for the better.
Please cite [the mahotas paper](https://dx.doi.org/10.5334/jors.ac) (see
details below under [Citation](#Citation)) if you use it in a publication.
## Examples
This is a simple example (using an example file that is shipped with
mahotas) of calling watershed using above threshold regions as a seed
(we use Otsu to define threshold).
```python
# import using ``mh`` abbreviation which is common:
import mahotas as mh
# Load one of the demo images
im = mh.demos.load('nuclear')
# Automatically compute a threshold
T_otsu = mh.thresholding.otsu(im)
# Label the thresholded image (thresholding is done with numpy operations
seeds,nr_regions = mh.label(im > T_otsu)
# Call seeded watershed to expand the threshold
labeled = mh.cwatershed(im.max() - im, seeds)
```
Here is a very simple example of using `mahotas.distance` (which
computes a distance map):
```python
import pylab as p
import numpy as np
import mahotas as mh
f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False
# f is basically True with the exception of two islands: one in the lower-right
# corner, another, middle-left
dmap = mh.distance(f)
p.imshow(dmap)
p.show()
```
(This is under [mahotas/demos/distance.py](https://github.com/luispedro/mahotas/blob/master/mahotas/demos/distance.py).)
How to invoke thresholding functions:
```python
import mahotas as mh
import numpy as np
from pylab import imshow, gray, show, subplot
from os import path
# Load photo of mahotas' author in greyscale
photo = mh.demos.load('luispedro', as_grey=True)
# Convert to integer values (using numpy operations)
photo = photo.astype(np.uint8)
# Compute Otsu threshold
T_otsu = mh.otsu(photo)
thresholded_otsu = (photo > T_otsu)
# Compute Riddler-Calvard threshold
T_rc = mh.rc(photo)
thresholded_rc = (photo > T_rc)
# Now call pylab functions to display the image
gray()
subplot(2,1,1)
imshow(thresholded_otsu)
subplot(2,1,2)
imshow(thresholded_rc)
show()
```
As you can see, we rely on numpy/matplotlib for many operations.
## Install
If you are using [conda](https://anaconda.org/), you can install mahotas from
[conda-forge](https://conda-forge.github.io/) using the following commands:
```bash
conda config --add channels conda-forge
conda install mahotas
```
### Compilation from source
You will need python (naturally), numpy, and a C++ compiler. Then you
should be able to use:
```bash
pip install mahotas
```
You can test your installation by running:
```bash
python -c "import mahotas as mh; mh.test()"
```
If you run into issues, the manual has more [extensive documentation on
mahotas
installation](https://mahotas.readthedocs.io/en/latest/install.html),
including how to find pre-built for several platforms.
## Citation
If you use mahotas on a published publication, please cite:
> **Luis Pedro Coelho** Mahotas: Open source software for scriptable
> computer vision in Journal of Open Research Software, vol 1, 2013.
> [[DOI](https://dx.doi.org/10.5334/jors.ac)]
In Bibtex format:
> @article{mahotas,
> author = {Luis Pedro Coelho},
> title = {Mahotas: Open source software for scriptable computer vision},
> journal = {Journal of Open Research Software},
> year = {2013},
> doi = {https://dx.doi.org/10.5334/jors.ac},
> month = {July},
> volume = {1}
> }
You can access this information using the `mahotas.citation()` function.
## Development
Development happens on github
([https://github.com/luispedro/mahotas](https://github.com/luispedro/mahotas)).
You can set the `DEBUG` environment variable before compilation to get a
debug version:
```bash
export DEBUG=1
python setup.py test
```
You can set it to the value `2` to get extra checks:
```bash
export DEBUG=2
python setup.py test
```
Be careful not to use this in production unless you are chasing a bug.
Debug level 2 is very slow as it adds many runtime checks.
The `Makefile` that is shipped with the source of mahotas can be useful
too. `make debug` will create a debug build. `make fast` will create a
non-debug build (you need to `make clean` in between). `make test` will
run the test suite.
## Links & Contacts
*Documentation*:
[https://mahotas.readthedocs.io/](https://mahotas.readthedocs.io/)
*Issue Tracker*: [github mahotas
issues](https://github.com/luispedro/mahotas/issues)
*Mailing List*: Use the [pythonvision mailing
list](https://groups.google.com/group/pythonvision?pli=1) for questions,
bug submissions, etc. Or ask on [stackoverflow (tag
mahotas)](https://stackoverflow.com/questions/tagged/mahotas)
*Main Author & Maintainer*: [Luis Pedro Coelho](https://luispedro.org)
(follow on [twitter](https://twitter.com/luispedrocoelho) or
[github](https://github.com/luispedro)).
Mahotas also includes code by Zachary Pincus [from scikits.image], Peter
J. Verveer [from scipy.ndimage], and Davis King [from dlib], Christoph
Gohlke, as well as
[others](https://github.com/luispedro/mahotas/graphs/contributors).
[Presentation about mahotas for bioimage
informatics](https://luispedro.org/files/talks/2013/EuBIAS/mahotas.html)
For more general discussion of computer vision in Python, the
[pythonvision mailing
list](https://groups.google.com/group/pythonvision?pli=1) is a much
better venue and generates a public discussion log for others in the
future. You can use it for mahotas or general computer vision in Python
questions.
## Recent Changes
### Version 1.4.18 (Jul 18 2024)
- Fix bug in Haralick features and NumPy 2 (thanks to @Czaki, see [#150](https://github.com/luispedro/mahotas/pull/150))
### Version 1.4.17 (Jul 13 2024)
- Fix bug that stopped mahotas from working on Windows
### Version 1.4.16 (Jul 3 2024)
- update for NumPy 2
- Add deprecated warning for freeimage
### Version 1.4.15 (Mar 24 2024)
- Update build system (thanks to @Czaki, see #147)
### Version 1.4.14 (Mar 24 2024)
- Fix code for C++17 (issue #146)
### Version 1.4.13 (Jun 28 2022)
- Fix freeimage testing (and make freeimage loading more robust, see #129)
- Add GIL fixed (which triggered crashes in newer NumPy versions)
### Version 1.4.12 (Oct 14 2021)
- Update to newer NumPy
- Build wheels for Python 3.9 & 3.10
### Version 1.4.11 (Aug 16 2020)
- Convert tests to pytest
- Fix testing for PyPy
### Version 1.4.10 (Jun 11 2020)
- Build wheels automatically (PR #114 by [nathanhillyer](https://github.com/nathanhillyer))
### Version 1.4.9 (Nov 12 2019)
- Fix FreeImage detection (issue #108)
### Version 1.4.8 (Oct 11 2019)
- Fix co-occurrence matrix computation (patch by @databaaz)
### Version 1.4.7 (Jul 10 2019)
- Fix compilation on Windows
### Version 1.4.6 (Jul 10 2019)
- Make watershed work for >2³¹ voxels (issue #102)
- Remove milk from demos
- Improve performance by avoid unnecessary array copies in `cwatershed()`,
`majority_filter()`, and color conversions
- Fix bug in interpolation
### Version 1.4.5 (Oct 20 2018)
- Upgrade code to newer NumPy API (issue #95)
### Version 1.4.4 (Nov 5 2017)
- Fix bug in Bernsen thresholding (issue #84)
### Version 1.4.3 (Oct 3 2016)
- Fix distribution (add missing `README.md` file)
### Version 1.4.2 (Oct 2 2016)
- Fix `resize\_to` return exactly the requested size
- Fix hard crash when computing texture on arrays with negative values (issue #72)
- Added `distance` argument to haralick features (pull request #76, by
Guillaume Lemaitre)
### Version 1.4.1 (Dec 20 2015)
- Add `filter\_labeled` function
- Fix tests on 32 bit platforms and older versions of numpy
### Version 1.4.0 (July 8 2015)
- Added `mahotas-features.py` script
- Add short argument to citation() function
- Add max\_iter argument to thin() function
- Fixed labeled.bbox when there is no background (issue \#61, reported
by Daniel Haehn)
- bbox now allows dimensions greater than 2 (including when using the
`as_slice` and `border` arguments)
- Extended croptobbox for dimensions greater than 2
- Added use\_x\_minus\_y\_variance option to haralick features
- Add function `lbp_names`
### Version 1.3.0 (April 28 2015)
- Improve memory handling in freeimage.write\_multipage
- Fix moments parameter swap
- Add labeled.bbox function
- Add return\_mean and return\_mean\_ptp arguments to haralick
function
- Add difference of Gaussians filter (by Jianyu Wang)
- Add Laplacian filter (by Jianyu Wang)
- Fix crash in median\_filter when mismatched arguments are passed
- Fix gaussian\_filter1d for ndim \> 2
### Version 1.2.4 (December 23 2014)
- Add PIL based IO
### Version 1.2.3 (November 8 2014)
- Export mean\_filter at top level
- Fix to Zernike moments computation (reported by Sergey Demurin)
- Fix compilation in platforms without npy\_float128 (patch by Gabi
Davar)
### Version 1.2.2 (October 19 2014)
- Add minlength argument to labeled\_sum
- Generalize regmax/regmin to work with floating point images
- Allow floating point inputs to `cwatershed()`
- Correctly check for float16 & float128 inputs
- Make sobel into a pure function (i.e., do not normalize its input)
- Fix sobel filtering
### Version 1.2.1 (July 21 2014)
- Explicitly set numpy.include\_dirs() in setup.py [patch by Andrew
Stromnov]
### Version 1.2 (July 17 2014)
- Export locmax|locmin at the mahotas namespace level
- Break away ellipse\_axes from eccentricity code as it can be useful
on its own
- Add `find()` function
- Add `mean_filter()` function
- Fix `cwatershed()` overflow possibility
- Make labeled functions more flexible in accepting more types
- Fix crash in `close_holes()` with nD images (for n \> 2)
- Remove matplotlibwrap
- Use standard setuptools for building (instead of numpy.distutils)
- Add `overlay()` function
### Version 1.1.1 (July 4 2014)
- Fix crash in close\_holes() with nD images (for n \> 2)
### 1.1.0 (February 12 2014)
- Better error checking
- Fix interpolation of integer images using order 1
- Add resize\_to & resize\_rgb\_to
- Add coveralls coverage
- Fix SLIC superpixels connectivity
- Add remove\_regions\_where function
- Fix hard crash in convolution
- Fix axis handling in convolve1d
- Add normalization to moments calculation
See the
[ChangeLog](https://github.com/luispedro/mahotas/blob/master/ChangeLog)
for older version.
## License
[](https://app.fossa.io/projects/git%2Bgithub.com%2Fluispedro%2Fmahotas?ref=badge_large)
Raw data
{
"_id": null,
"home_page": "https://luispedro.org/software/mahotas",
"name": "mahotas",
"maintainer": null,
"docs_url": "https://pythonhosted.org/mahotas/",
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Luis Pedro Coelho",
"author_email": "luis@luispedro.org",
"download_url": "https://files.pythonhosted.org/packages/f6/71/bf99df8458c0ca05cb9a16f400e66c09b37b15ea124aaa3becb577555cc5/mahotas-1.4.18.tar.gz",
"platform": "Any",
"description": "# Mahotas\n\n## Python Computer Vision Library\n\nMahotas is a library of fast computer vision algorithms (all implemented\nin C++ for speed) operating over numpy arrays.\n\n\n[](https://coveralls.io/github/luispedro/mahotas?branch=master)\n[](https://opensource.org/licenses/MIT)\n[](https://pepy.tech/project/mahotas/month)\n[](https://anaconda.org/conda-forge/mahotas)\n[](https://anaconda.org/conda-forge/mahotas)\n\nPython versions 2.7, 3.4+, are supported.\n\nNotable algorithms:\n\n- [watershed](https://mahotas.readthedocs.io/en/latest/distance.html)\n- [convex points calculations](https://mahotas.readthedocs.io/en/latest/polygon.html).\n- hit & miss, thinning.\n- Zernike & Haralick, LBP, and TAS features.\n- [Speeded-Up Robust Features\n (SURF)](https://mahotas.readthedocs.io/en/latest/surf.html), a form of local\n features.\n- [thresholding](https://mahotas.readthedocs.io/en/latest/thresholding.html).\n- convolution.\n- Sobel edge detection.\n- spline interpolation\n- SLIC super pixels.\n\nMahotas currently has over 100 functions for image processing and\ncomputer vision and it keeps growing.\n\nThe release schedule is roughly one release a month and each release\nbrings new functionality and improved performance. The interface is very\nstable, though, and code written using a version of mahotas from years\nback will work just fine in the current version, except it will be\nfaster (some interfaces are deprecated and will be removed after a few\nyears, but in the meanwhile, you only get a warning). In a few\nunfortunate cases, there was a bug in the old code and your results will\nchange for the better.\n\nPlease cite [the mahotas paper](https://dx.doi.org/10.5334/jors.ac) (see\ndetails below under [Citation](#Citation)) if you use it in a publication.\n\n## Examples\n\nThis is a simple example (using an example file that is shipped with\nmahotas) of calling watershed using above threshold regions as a seed\n(we use Otsu to define threshold).\n\n```python\n# import using ``mh`` abbreviation which is common:\nimport mahotas as mh\n\n# Load one of the demo images\nim = mh.demos.load('nuclear')\n\n# Automatically compute a threshold\nT_otsu = mh.thresholding.otsu(im)\n\n# Label the thresholded image (thresholding is done with numpy operations\nseeds,nr_regions = mh.label(im > T_otsu)\n\n# Call seeded watershed to expand the threshold\nlabeled = mh.cwatershed(im.max() - im, seeds)\n```\n\nHere is a very simple example of using `mahotas.distance` (which\ncomputes a distance map):\n\n```python\nimport pylab as p\nimport numpy as np\nimport mahotas as mh\n\nf = np.ones((256,256), bool)\nf[200:,240:] = False\nf[128:144,32:48] = False\n# f is basically True with the exception of two islands: one in the lower-right\n# corner, another, middle-left\n\ndmap = mh.distance(f)\np.imshow(dmap)\np.show()\n```\n\n(This is under [mahotas/demos/distance.py](https://github.com/luispedro/mahotas/blob/master/mahotas/demos/distance.py).)\n\nHow to invoke thresholding functions:\n\n```python\nimport mahotas as mh\nimport numpy as np\nfrom pylab import imshow, gray, show, subplot\nfrom os import path\n\n# Load photo of mahotas' author in greyscale\nphoto = mh.demos.load('luispedro', as_grey=True)\n\n# Convert to integer values (using numpy operations)\nphoto = photo.astype(np.uint8)\n\n# Compute Otsu threshold\nT_otsu = mh.otsu(photo)\nthresholded_otsu = (photo > T_otsu)\n\n# Compute Riddler-Calvard threshold\nT_rc = mh.rc(photo)\nthresholded_rc = (photo > T_rc)\n\n# Now call pylab functions to display the image\ngray()\nsubplot(2,1,1)\nimshow(thresholded_otsu)\nsubplot(2,1,2)\nimshow(thresholded_rc)\nshow()\n```\n\nAs you can see, we rely on numpy/matplotlib for many operations.\n\n## Install\n\nIf you are using [conda](https://anaconda.org/), you can install mahotas from\n[conda-forge](https://conda-forge.github.io/) using the following commands:\n\n```bash\nconda config --add channels conda-forge\nconda install mahotas\n```\n\n### Compilation from source\n\nYou will need python (naturally), numpy, and a C++ compiler. Then you\nshould be able to use:\n\n```bash\npip install mahotas\n```\n\nYou can test your installation by running:\n\n```bash\npython -c \"import mahotas as mh; mh.test()\"\n```\n\nIf you run into issues, the manual has more [extensive documentation on\nmahotas\ninstallation](https://mahotas.readthedocs.io/en/latest/install.html),\nincluding how to find pre-built for several platforms.\n\n## Citation\n\nIf you use mahotas on a published publication, please cite:\n\n> **Luis Pedro Coelho** Mahotas: Open source software for scriptable\n> computer vision in Journal of Open Research Software, vol 1, 2013.\n> [[DOI](https://dx.doi.org/10.5334/jors.ac)]\n\nIn Bibtex format:\n\n> @article{mahotas,\n> author = {Luis Pedro Coelho},\n> title = {Mahotas: Open source software for scriptable computer vision},\n> journal = {Journal of Open Research Software},\n> year = {2013},\n> doi = {https://dx.doi.org/10.5334/jors.ac},\n> month = {July},\n> volume = {1}\n> }\n\nYou can access this information using the `mahotas.citation()` function.\n\n## Development\n\nDevelopment happens on github\n([https://github.com/luispedro/mahotas](https://github.com/luispedro/mahotas)).\n\nYou can set the `DEBUG` environment variable before compilation to get a\ndebug version:\n\n```bash\nexport DEBUG=1\npython setup.py test\n```\n\nYou can set it to the value `2` to get extra checks:\n\n```bash\nexport DEBUG=2\npython setup.py test\n```\n\nBe careful not to use this in production unless you are chasing a bug.\nDebug level 2 is very slow as it adds many runtime checks.\n\nThe `Makefile` that is shipped with the source of mahotas can be useful\ntoo. `make debug` will create a debug build. `make fast` will create a\nnon-debug build (you need to `make clean` in between). `make test` will\nrun the test suite.\n\n## Links & Contacts\n\n*Documentation*:\n[https://mahotas.readthedocs.io/](https://mahotas.readthedocs.io/)\n\n*Issue Tracker*: [github mahotas\nissues](https://github.com/luispedro/mahotas/issues)\n\n*Mailing List*: Use the [pythonvision mailing\nlist](https://groups.google.com/group/pythonvision?pli=1) for questions,\nbug submissions, etc. Or ask on [stackoverflow (tag\nmahotas)](https://stackoverflow.com/questions/tagged/mahotas)\n\n*Main Author & Maintainer*: [Luis Pedro Coelho](https://luispedro.org)\n(follow on [twitter](https://twitter.com/luispedrocoelho) or\n[github](https://github.com/luispedro)).\n\nMahotas also includes code by Zachary Pincus [from scikits.image], Peter\nJ. Verveer [from scipy.ndimage], and Davis King [from dlib], Christoph\nGohlke, as well as\n[others](https://github.com/luispedro/mahotas/graphs/contributors).\n\n[Presentation about mahotas for bioimage\ninformatics](https://luispedro.org/files/talks/2013/EuBIAS/mahotas.html)\n\nFor more general discussion of computer vision in Python, the\n[pythonvision mailing\nlist](https://groups.google.com/group/pythonvision?pli=1) is a much\nbetter venue and generates a public discussion log for others in the\nfuture. You can use it for mahotas or general computer vision in Python\nquestions.\n\n## Recent Changes\n\n### Version 1.4.18 (Jul 18 2024)\n\n- Fix bug in Haralick features and NumPy 2 (thanks to @Czaki, see [#150](https://github.com/luispedro/mahotas/pull/150))\n\n### Version 1.4.17 (Jul 13 2024)\n\n- Fix bug that stopped mahotas from working on Windows\n\n### Version 1.4.16 (Jul 3 2024)\n\n- update for NumPy 2\n- Add deprecated warning for freeimage\n\n\n### Version 1.4.15 (Mar 24 2024)\n\n- Update build system (thanks to @Czaki, see #147)\n\n### Version 1.4.14 (Mar 24 2024)\n\n- Fix code for C++17 (issue #146)\n\n\n### Version 1.4.13 (Jun 28 2022)\n\n- Fix freeimage testing (and make freeimage loading more robust, see #129)\n- Add GIL fixed (which triggered crashes in newer NumPy versions)\n\n### Version 1.4.12 (Oct 14 2021)\n\n- Update to newer NumPy\n- Build wheels for Python 3.9 & 3.10\n\n### Version 1.4.11 (Aug 16 2020)\n\n- Convert tests to pytest\n- Fix testing for PyPy\n\n### Version 1.4.10 (Jun 11 2020)\n\n- Build wheels automatically (PR #114 by [nathanhillyer](https://github.com/nathanhillyer))\n\n### Version 1.4.9 (Nov 12 2019)\n\n- Fix FreeImage detection (issue #108)\n\n### Version 1.4.8 (Oct 11 2019)\n\n- Fix co-occurrence matrix computation (patch by @databaaz)\n\n### Version 1.4.7 (Jul 10 2019)\n\n- Fix compilation on Windows\n\n### Version 1.4.6 (Jul 10 2019)\n\n- Make watershed work for >2\u00b3\u00b9 voxels (issue #102)\n- Remove milk from demos\n- Improve performance by avoid unnecessary array copies in `cwatershed()`,\n `majority_filter()`, and color conversions\n- Fix bug in interpolation\n\n### Version 1.4.5 (Oct 20 2018)\n- Upgrade code to newer NumPy API (issue #95)\n\n### Version 1.4.4 (Nov 5 2017)\n- Fix bug in Bernsen thresholding (issue #84)\n\n### Version 1.4.3 (Oct 3 2016)\n- Fix distribution (add missing `README.md` file)\n\n### Version 1.4.2 (Oct 2 2016)\n\n- Fix `resize\\_to` return exactly the requested size\n- Fix hard crash when computing texture on arrays with negative values (issue #72)\n- Added `distance` argument to haralick features (pull request #76, by\n Guillaume Lemaitre)\n\n### Version 1.4.1 (Dec 20 2015)\n\n- Add `filter\\_labeled` function\n- Fix tests on 32 bit platforms and older versions of numpy\n\n### Version 1.4.0 (July 8 2015)\n\n- Added `mahotas-features.py` script\n- Add short argument to citation() function\n- Add max\\_iter argument to thin() function\n- Fixed labeled.bbox when there is no background (issue \\#61, reported\n by Daniel Haehn)\n- bbox now allows dimensions greater than 2 (including when using the\n `as_slice` and `border` arguments)\n- Extended croptobbox for dimensions greater than 2\n- Added use\\_x\\_minus\\_y\\_variance option to haralick features\n- Add function `lbp_names`\n\n### Version 1.3.0 (April 28 2015)\n\n- Improve memory handling in freeimage.write\\_multipage\n- Fix moments parameter swap\n- Add labeled.bbox function\n- Add return\\_mean and return\\_mean\\_ptp arguments to haralick\n function\n- Add difference of Gaussians filter (by Jianyu Wang)\n- Add Laplacian filter (by Jianyu Wang)\n- Fix crash in median\\_filter when mismatched arguments are passed\n- Fix gaussian\\_filter1d for ndim \\> 2\n\n### Version 1.2.4 (December 23 2014)\n\n- Add PIL based IO\n\n### Version 1.2.3 (November 8 2014)\n\n- Export mean\\_filter at top level\n- Fix to Zernike moments computation (reported by Sergey Demurin)\n- Fix compilation in platforms without npy\\_float128 (patch by Gabi\n Davar)\n\n### Version 1.2.2 (October 19 2014)\n\n- Add minlength argument to labeled\\_sum\n- Generalize regmax/regmin to work with floating point images\n- Allow floating point inputs to `cwatershed()`\n- Correctly check for float16 & float128 inputs\n- Make sobel into a pure function (i.e., do not normalize its input)\n- Fix sobel filtering\n\n### Version 1.2.1 (July 21 2014)\n\n- Explicitly set numpy.include\\_dirs() in setup.py [patch by Andrew\n Stromnov]\n\n### Version 1.2 (July 17 2014)\n\n- Export locmax|locmin at the mahotas namespace level\n- Break away ellipse\\_axes from eccentricity code as it can be useful\n on its own\n- Add `find()` function\n- Add `mean_filter()` function\n- Fix `cwatershed()` overflow possibility\n- Make labeled functions more flexible in accepting more types\n- Fix crash in `close_holes()` with nD images (for n \\> 2)\n- Remove matplotlibwrap\n- Use standard setuptools for building (instead of numpy.distutils)\n- Add `overlay()` function\n\n### Version 1.1.1 (July 4 2014)\n\n- Fix crash in close\\_holes() with nD images (for n \\> 2)\n\n### 1.1.0 (February 12 2014)\n\n- Better error checking\n- Fix interpolation of integer images using order 1\n- Add resize\\_to & resize\\_rgb\\_to\n- Add coveralls coverage\n- Fix SLIC superpixels connectivity\n- Add remove\\_regions\\_where function\n- Fix hard crash in convolution\n- Fix axis handling in convolve1d\n- Add normalization to moments calculation\n\nSee the\n[ChangeLog](https://github.com/luispedro/mahotas/blob/master/ChangeLog)\nfor older version.\n\n\n## License\n[](https://app.fossa.io/projects/git%2Bgithub.com%2Fluispedro%2Fmahotas?ref=badge_large)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Mahotas: Computer Vision Library",
"version": "1.4.18",
"project_urls": {
"Homepage": "https://luispedro.org/software/mahotas"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e183f291cb8d7897509e967a9bb0313b585e4ab81a45d0e4cab5e31cc599f6e3",
"md5": "b1e98c34cbfa51b9220639baf5d89458",
"sha256": "0238a4665d55f936c6dfb26293e7348482cf9c71bd1caec3a896bfb988b6623b"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "b1e98c34cbfa51b9220639baf5d89458",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 1877317,
"upload_time": "2024-07-17T21:10:14",
"upload_time_iso_8601": "2024-07-17T21:10:14.071468Z",
"url": "https://files.pythonhosted.org/packages/e1/83/f291cb8d7897509e967a9bb0313b585e4ab81a45d0e4cab5e31cc599f6e3/mahotas-1.4.18-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b97b3c09b1bb0c0c045a33cef7763d094a7857c7475564e223391845f176cdb2",
"md5": "99df132b079b7e594486b8bda153b9e5",
"sha256": "a33ef7e8bd0ff08990d08274a7d7aaaf1143540983de3e036295d6668ce12cb6"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "99df132b079b7e594486b8bda153b9e5",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 1798019,
"upload_time": "2024-07-17T21:10:17",
"upload_time_iso_8601": "2024-07-17T21:10:17.990920Z",
"url": "https://files.pythonhosted.org/packages/b9/7b/3c09b1bb0c0c045a33cef7763d094a7857c7475564e223391845f176cdb2/mahotas-1.4.18-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "541a2f6dbb52599c9da9aac6da0f60950f6b7eed54a3d38779bf0f80d41b3eb9",
"md5": "d858805ef0a576ffa062470c26a68393",
"sha256": "9f890b79891184a4a6dcc274da847fbf54fe4b8fa8839705af677cdb63536f22"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d858805ef0a576ffa062470c26a68393",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 5788791,
"upload_time": "2024-07-17T21:10:23",
"upload_time_iso_8601": "2024-07-17T21:10:23.018862Z",
"url": "https://files.pythonhosted.org/packages/54/1a/2f6dbb52599c9da9aac6da0f60950f6b7eed54a3d38779bf0f80d41b3eb9/mahotas-1.4.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ed88075d55003e28ff9964cd72b5d3c48f37b4320ab2d209010970005aac63a0",
"md5": "d3a007c91c702ed1f5e6a0b9b65b794b",
"sha256": "e1804359325ebd5a08998c7d3837ea10883a66678007662e4c849013f7d084ea"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp310-cp310-win32.whl",
"has_sig": false,
"md5_digest": "d3a007c91c702ed1f5e6a0b9b65b794b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 1712133,
"upload_time": "2024-07-17T21:10:25",
"upload_time_iso_8601": "2024-07-17T21:10:25.790870Z",
"url": "https://files.pythonhosted.org/packages/ed/88/075d55003e28ff9964cd72b5d3c48f37b4320ab2d209010970005aac63a0/mahotas-1.4.18-cp310-cp310-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2b3c2ca2b24f311586f341ba254670cc320944e7d3cf1cc741ce5a622611c668",
"md5": "a3eedc993a1390da40fc472e56da2774",
"sha256": "43a605408b2e9fd77f4adb0ff301bc5c096979cab06da32788fc18c3b06378db"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "a3eedc993a1390da40fc472e56da2774",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 1731332,
"upload_time": "2024-07-17T21:10:28",
"upload_time_iso_8601": "2024-07-17T21:10:28.215190Z",
"url": "https://files.pythonhosted.org/packages/2b/3c/2ca2b24f311586f341ba254670cc320944e7d3cf1cc741ce5a622611c668/mahotas-1.4.18-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6c15fab81001a735766f8bbe7080e714b9582817bd479b915977e748199f00d9",
"md5": "bcddb229eef5a902c2856e24cec5a3ac",
"sha256": "974050ee67913ac2396b4889247577f7202038dc328b50a07f83887c56ca9774"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "bcddb229eef5a902c2856e24cec5a3ac",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 1877309,
"upload_time": "2024-07-17T21:10:30",
"upload_time_iso_8601": "2024-07-17T21:10:30.758317Z",
"url": "https://files.pythonhosted.org/packages/6c/15/fab81001a735766f8bbe7080e714b9582817bd479b915977e748199f00d9/mahotas-1.4.18-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4ff23125072f76b7809bd66748b2f6872dbeb0e72f43fdd94e73a9d3df95aa4c",
"md5": "c683de9d34adbb6ec0147feaf1735aca",
"sha256": "28c93bdfefd4cf271bf2b30b69c130ab3cac5d840dcd3b5ae6e7f6d3648533aa"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "c683de9d34adbb6ec0147feaf1735aca",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 1798029,
"upload_time": "2024-07-17T21:10:33",
"upload_time_iso_8601": "2024-07-17T21:10:33.063969Z",
"url": "https://files.pythonhosted.org/packages/4f/f2/3125072f76b7809bd66748b2f6872dbeb0e72f43fdd94e73a9d3df95aa4c/mahotas-1.4.18-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81fc691ed6d7aedaf8caa30786e88462edd84e78d2b50d320a07937e2ce41fb1",
"md5": "c4ef7a9245cb0447d2d5b83469d0c474",
"sha256": "8f4a41dd3b49bc2e5240b265b9ab35a6793c20ddcb3b392f3ba27a0940086de6"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "c4ef7a9245cb0447d2d5b83469d0c474",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 5804451,
"upload_time": "2024-07-17T21:10:36",
"upload_time_iso_8601": "2024-07-17T21:10:36.365617Z",
"url": "https://files.pythonhosted.org/packages/81/fc/691ed6d7aedaf8caa30786e88462edd84e78d2b50d320a07937e2ce41fb1/mahotas-1.4.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8545eded44b0d6d1e4642c87eb79b6f568b8a2cbe7183dbb6aec185ea6a54786",
"md5": "f18a847319759d7b31c9f6ad4e7f2052",
"sha256": "a4e70ead2a2bf6e8ad9a70f9c33fe0e752edeeea1fc5e8e934efcf29d90d69f2"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp311-cp311-win32.whl",
"has_sig": false,
"md5_digest": "f18a847319759d7b31c9f6ad4e7f2052",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 1712194,
"upload_time": "2024-07-17T21:10:39",
"upload_time_iso_8601": "2024-07-17T21:10:39.565983Z",
"url": "https://files.pythonhosted.org/packages/85/45/eded44b0d6d1e4642c87eb79b6f568b8a2cbe7183dbb6aec185ea6a54786/mahotas-1.4.18-cp311-cp311-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e00c3710525e4d3a2cb28852cb77878d8268e3e56c52cdb4018972685a11e6cd",
"md5": "fc37e18eb0a0a6764f77b3ea5f920678",
"sha256": "7a9a7b2a9e3e9d9818a901232fc68a2f7bef31483150ac39acb7d56f86e0754c"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "fc37e18eb0a0a6764f77b3ea5f920678",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 1731319,
"upload_time": "2024-07-17T21:10:41",
"upload_time_iso_8601": "2024-07-17T21:10:41.922565Z",
"url": "https://files.pythonhosted.org/packages/e0/0c/3710525e4d3a2cb28852cb77878d8268e3e56c52cdb4018972685a11e6cd/mahotas-1.4.18-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cb7807865c11f24f539e05ad951e261051d1177f8c4432fb1e230d9d8e9132a2",
"md5": "10f14a6bdb8d99216617d3f15e91cc9e",
"sha256": "5314778e8154fb69ddb299e07c48d1998eb3e9567724e93d5018940854975204"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp312-cp312-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "10f14a6bdb8d99216617d3f15e91cc9e",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 1875870,
"upload_time": "2024-07-17T21:10:46",
"upload_time_iso_8601": "2024-07-17T21:10:46.503989Z",
"url": "https://files.pythonhosted.org/packages/cb/78/07865c11f24f539e05ad951e261051d1177f8c4432fb1e230d9d8e9132a2/mahotas-1.4.18-cp312-cp312-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1d84d325af34ce1c977f71503d5bddb5798cfaddbcdd30047caafcf013b2daf2",
"md5": "14a260ad02fd2f0fabf88ce4ad07665d",
"sha256": "fe05bf5ee3498cd9411adf7c9fb8e6278194a04a1491c1a6d807658d4af36bb4"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "14a260ad02fd2f0fabf88ce4ad07665d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 1795431,
"upload_time": "2024-07-17T21:10:49",
"upload_time_iso_8601": "2024-07-17T21:10:49.136041Z",
"url": "https://files.pythonhosted.org/packages/1d/84/d325af34ce1c977f71503d5bddb5798cfaddbcdd30047caafcf013b2daf2/mahotas-1.4.18-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3b04ebfd6f54a5919a4f344e498a541c26ca1dbf5e7628f464cbf35ea580308a",
"md5": "6e9ead56c25d52c0b6584b7229697896",
"sha256": "17b6a5420fd71227cd3e875e42a01818b3d94cacb075f93afed36fab63390b75"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6e9ead56c25d52c0b6584b7229697896",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 5817840,
"upload_time": "2024-07-17T21:10:51",
"upload_time_iso_8601": "2024-07-17T21:10:51.901158Z",
"url": "https://files.pythonhosted.org/packages/3b/04/ebfd6f54a5919a4f344e498a541c26ca1dbf5e7628f464cbf35ea580308a/mahotas-1.4.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7e7f1b89107058873a36e0aa0edd03dbbc18c647c3b672f391270d8b7f056f37",
"md5": "243da80e7c8de23948ff131d55f23957",
"sha256": "839787784f916c4f03a43e92bb22184920213e5ece0fa0c826f5bdf92eaaff4b"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp312-cp312-win32.whl",
"has_sig": false,
"md5_digest": "243da80e7c8de23948ff131d55f23957",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 1712598,
"upload_time": "2024-07-17T21:10:54",
"upload_time_iso_8601": "2024-07-17T21:10:54.487359Z",
"url": "https://files.pythonhosted.org/packages/7e/7f/1b89107058873a36e0aa0edd03dbbc18c647c3b672f391270d8b7f056f37/mahotas-1.4.18-cp312-cp312-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a7938ab4c4e10235b0acef65561a33b303b66d2d1fd180545872798db05f0e09",
"md5": "0b0a61d6374e94f1a3be531a7ad0670a",
"sha256": "579e6f48549b06eb32cfa9501e320194a9d8a97fe35a7832b6b1f3fa104cfb16"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "0b0a61d6374e94f1a3be531a7ad0670a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 1730892,
"upload_time": "2024-07-17T21:10:56",
"upload_time_iso_8601": "2024-07-17T21:10:56.550303Z",
"url": "https://files.pythonhosted.org/packages/a7/93/8ab4c4e10235b0acef65561a33b303b66d2d1fd180545872798db05f0e09/mahotas-1.4.18-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2fdbb0bccccae573114cfc8e517157d076f96f7a5378a1837a27bad67b55be26",
"md5": "e0300fc677d3ecbe582f0fde6cf876f8",
"sha256": "a5a268e7cf950acb95949a5351c7c9c7752866611acc1e8ddad232ef659d4934"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp36-cp36m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "e0300fc677d3ecbe582f0fde6cf876f8",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 1862190,
"upload_time": "2024-07-17T21:11:00",
"upload_time_iso_8601": "2024-07-17T21:11:00.357087Z",
"url": "https://files.pythonhosted.org/packages/2f/db/b0bccccae573114cfc8e517157d076f96f7a5378a1837a27bad67b55be26/mahotas-1.4.18-cp36-cp36m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "169c5c4a90987a68d3a53d3f494813c81c47203b107dd953d6ff421028f87a73",
"md5": "db2ffd49954b26a885c3ddcc2b6c987a",
"sha256": "85f327e13e9445cf65000429b7ae82c2f1700a3d3031686e17a3f392eb0dfac7"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "db2ffd49954b26a885c3ddcc2b6c987a",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 5890418,
"upload_time": "2024-07-17T21:11:03",
"upload_time_iso_8601": "2024-07-17T21:11:03.411770Z",
"url": "https://files.pythonhosted.org/packages/16/9c/5c4a90987a68d3a53d3f494813c81c47203b107dd953d6ff421028f87a73/mahotas-1.4.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e3394234cea59334b9f7bc458e061f0602489f2f55074bdef30b4aa07b25ca99",
"md5": "fc7c9df821f260211daf60be88a286c6",
"sha256": "0df6d5d63039764dd32d3e5e172ec7e9490ac81af9a5b8965ad58752451061aa"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp36-cp36m-win32.whl",
"has_sig": false,
"md5_digest": "fc7c9df821f260211daf60be88a286c6",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 1722354,
"upload_time": "2024-07-17T21:11:06",
"upload_time_iso_8601": "2024-07-17T21:11:06.107689Z",
"url": "https://files.pythonhosted.org/packages/e3/39/4234cea59334b9f7bc458e061f0602489f2f55074bdef30b4aa07b25ca99/mahotas-1.4.18-cp36-cp36m-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5a28c9b463bc96b530db0ee627fbe76b2cde61978213010a82cd3c14f6a4b1d6",
"md5": "369866161e4bd6ad0f5f825dd54fe616",
"sha256": "a419b07e56e4a33a56880e68bddfdd7f1c8b87721b8f2e20058e771cfc9be65e"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp36-cp36m-win_amd64.whl",
"has_sig": false,
"md5_digest": "369866161e4bd6ad0f5f825dd54fe616",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 1742018,
"upload_time": "2024-07-17T21:11:08",
"upload_time_iso_8601": "2024-07-17T21:11:08.492967Z",
"url": "https://files.pythonhosted.org/packages/5a/28/c9b463bc96b530db0ee627fbe76b2cde61978213010a82cd3c14f6a4b1d6/mahotas-1.4.18-cp36-cp36m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5b156ca2e31cd11c0ae7a96e38943a5836f23f685c19b1a78c248a92dc2d45a7",
"md5": "3b9bb0a7455f3ed6f105acc1fbb0abfc",
"sha256": "682eb0d3df01f0b18e5287f3a6b9c3787ee0e3d0fdad3d4952e6d865ffb13684"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp37-cp37m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "3b9bb0a7455f3ed6f105acc1fbb0abfc",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 1863393,
"upload_time": "2024-07-17T21:11:10",
"upload_time_iso_8601": "2024-07-17T21:11:10.866899Z",
"url": "https://files.pythonhosted.org/packages/5b/15/6ca2e31cd11c0ae7a96e38943a5836f23f685c19b1a78c248a92dc2d45a7/mahotas-1.4.18-cp37-cp37m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f7db7792f743fad377c69111ba040855a44b9520c69418faaf1e3698c5246066",
"md5": "f181507f7a5c795518ebd63647850e9c",
"sha256": "12762f32fb2bf34f072ee410e533c60d0301ca9a507eec5fe039cac6d1ff3273"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f181507f7a5c795518ebd63647850e9c",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 5897481,
"upload_time": "2024-07-17T21:11:13",
"upload_time_iso_8601": "2024-07-17T21:11:13.916184Z",
"url": "https://files.pythonhosted.org/packages/f7/db/7792f743fad377c69111ba040855a44b9520c69418faaf1e3698c5246066/mahotas-1.4.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6e9164b93c87b6a20ddada5230c9044215de9a235539fd41c62d4ba3db2f202d",
"md5": "538c4599ab40003848402423dea03af2",
"sha256": "20e3398eae2af20b6e64ee48865b2811e670346091fc2e8080f40ed190222c3a"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp37-cp37m-win32.whl",
"has_sig": false,
"md5_digest": "538c4599ab40003848402423dea03af2",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 1709891,
"upload_time": "2024-07-17T21:11:16",
"upload_time_iso_8601": "2024-07-17T21:11:16.184875Z",
"url": "https://files.pythonhosted.org/packages/6e/91/64b93c87b6a20ddada5230c9044215de9a235539fd41c62d4ba3db2f202d/mahotas-1.4.18-cp37-cp37m-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cae2ab8101929fd54ac4d6fca0de7d654d02b31263ff183d9d84530cc7e1ec81",
"md5": "ee61490fb75c4ae0d5a4f7c9afbe265d",
"sha256": "1b7dc6d5f435fdff39b6baafdbb2a953907c6c5c1137ceb60f7fe1032f32e012"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "ee61490fb75c4ae0d5a4f7c9afbe265d",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 1723931,
"upload_time": "2024-07-17T21:11:17",
"upload_time_iso_8601": "2024-07-17T21:11:17.971896Z",
"url": "https://files.pythonhosted.org/packages/ca/e2/ab8101929fd54ac4d6fca0de7d654d02b31263ff183d9d84530cc7e1ec81/mahotas-1.4.18-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ad6de3a7d57290a474e98d46fea13b8f7df318e3867018a6e00de116df99b571",
"md5": "e1249bda44f41b0a8d2b3e41fbcf1081",
"sha256": "f6b20d22bb2a30e2ffc599e8f1009c060045e0acf0642378528fc65c908ac730"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp38-cp38-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "e1249bda44f41b0a8d2b3e41fbcf1081",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 1872505,
"upload_time": "2024-07-17T21:11:19",
"upload_time_iso_8601": "2024-07-17T21:11:19.929312Z",
"url": "https://files.pythonhosted.org/packages/ad/6d/e3a7d57290a474e98d46fea13b8f7df318e3867018a6e00de116df99b571/mahotas-1.4.18-cp38-cp38-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81e2dba9f224deec358b48d64c5a8ad64d8f11860561f67fcfe2d3715c7d60b2",
"md5": "bfdeb478ac306cdf5300602fca4bd48c",
"sha256": "8b3963b320bf7b771f4ac18473be2791ff2f4a249c3aac774f0ae8fe87beb260"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "bfdeb478ac306cdf5300602fca4bd48c",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 1794725,
"upload_time": "2024-07-17T21:11:22",
"upload_time_iso_8601": "2024-07-17T21:11:22.152817Z",
"url": "https://files.pythonhosted.org/packages/81/e2/dba9f224deec358b48d64c5a8ad64d8f11860561f67fcfe2d3715c7d60b2/mahotas-1.4.18-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3e0d2290df4a4e45f3de414341ade0919e6d8aa23e7b571a5a79f82a5c81175c",
"md5": "46fe795f81e9159f297d91340d86950a",
"sha256": "2c47def3e69ea667a40ba1ad9352b5c0ac8ac8b12d9996d8e8c34d6ed2f98555"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "46fe795f81e9159f297d91340d86950a",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 5765200,
"upload_time": "2024-07-17T21:11:24",
"upload_time_iso_8601": "2024-07-17T21:11:24.298299Z",
"url": "https://files.pythonhosted.org/packages/3e/0d/2290df4a4e45f3de414341ade0919e6d8aa23e7b571a5a79f82a5c81175c/mahotas-1.4.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "709afc6d280e03dc6c157ed4733873ec85df713c9714d4d001446ed53f2359ae",
"md5": "57012f735a1a016a27018668b11a6fe9",
"sha256": "35a33c165ad6afabddd839eee252ab8fe6f6e5e276c70449048034c218c91e01"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp38-cp38-win32.whl",
"has_sig": false,
"md5_digest": "57012f735a1a016a27018668b11a6fe9",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 1710460,
"upload_time": "2024-07-17T21:11:26",
"upload_time_iso_8601": "2024-07-17T21:11:26.592461Z",
"url": "https://files.pythonhosted.org/packages/70/9a/fc6d280e03dc6c157ed4733873ec85df713c9714d4d001446ed53f2359ae/mahotas-1.4.18-cp38-cp38-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c413d2d60e79d7a4c116379594ccc635a1c5d0dd062a3760134827cd33090aa9",
"md5": "a9f7d4721b8e2006eb83cfa358d26980",
"sha256": "b5325a1774cf9d1d45d0492339ca8df34ee61d42d41ee12b988b6de41ef48338"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "a9f7d4721b8e2006eb83cfa358d26980",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 1728402,
"upload_time": "2024-07-17T21:11:28",
"upload_time_iso_8601": "2024-07-17T21:11:28.713139Z",
"url": "https://files.pythonhosted.org/packages/c4/13/d2d60e79d7a4c116379594ccc635a1c5d0dd062a3760134827cd33090aa9/mahotas-1.4.18-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2a847c9025ffed11db2798c804ed30ccdde47344ab2d464e704377b46c103803",
"md5": "dba76c6a7edf1a717fd7819340433963",
"sha256": "94efd28e96cb47891b168f06513b329140deca175f3dee6a68b60af239b02d64"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "dba76c6a7edf1a717fd7819340433963",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 1877276,
"upload_time": "2024-07-17T21:11:30",
"upload_time_iso_8601": "2024-07-17T21:11:30.430153Z",
"url": "https://files.pythonhosted.org/packages/2a/84/7c9025ffed11db2798c804ed30ccdde47344ab2d464e704377b46c103803/mahotas-1.4.18-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "603adc0fb2422d3c3b0eac35f9d02bbc03448b267fec83f86906305f03ed2967",
"md5": "af1b64f38b23c1faf32c57ef3a9220a4",
"sha256": "c3ab43c6ee731ed71c2a0defd3f5bc619ad151fa72792cd1d0af4258e59b3f55"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "af1b64f38b23c1faf32c57ef3a9220a4",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 1798003,
"upload_time": "2024-07-17T21:11:32",
"upload_time_iso_8601": "2024-07-17T21:11:32.320759Z",
"url": "https://files.pythonhosted.org/packages/60/3a/dc0fb2422d3c3b0eac35f9d02bbc03448b267fec83f86906305f03ed2967/mahotas-1.4.18-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6382f444433c0b1b03c1e40308dcaa6a710774b9e513784a3661eb5867634e02",
"md5": "d1971ab4267810def76636edd239bc51",
"sha256": "6a7fcce88073fc540495bb9db71af675da227562a6cb485e31c5c1ecf2cab8c6"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d1971ab4267810def76636edd239bc51",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 5779493,
"upload_time": "2024-07-17T21:11:35",
"upload_time_iso_8601": "2024-07-17T21:11:35.005242Z",
"url": "https://files.pythonhosted.org/packages/63/82/f444433c0b1b03c1e40308dcaa6a710774b9e513784a3661eb5867634e02/mahotas-1.4.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a29ebe2eb036fdb86dc0ab9945a863425fa5e29f636f9f1ad9af75b2dd6c3ffb",
"md5": "cb0dfac603e8e9416534fa7779e67407",
"sha256": "31a3bb0d899b611aeed101ff3718ac55df764f6562528d457bd3c18f765bbb04"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp39-cp39-win32.whl",
"has_sig": false,
"md5_digest": "cb0dfac603e8e9416534fa7779e67407",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 1712078,
"upload_time": "2024-07-17T21:11:37",
"upload_time_iso_8601": "2024-07-17T21:11:37.339988Z",
"url": "https://files.pythonhosted.org/packages/a2/9e/be2eb036fdb86dc0ab9945a863425fa5e29f636f9f1ad9af75b2dd6c3ffb/mahotas-1.4.18-cp39-cp39-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7d5a2e89a81a018fa77c269cf45ffe99e2ccc756db4ca53ed25d2fb321d76537",
"md5": "4f225cbfbc499716240fa9abdc4f93e2",
"sha256": "bd35f2e7f70da27e27c995821203c1fadccf4d0a2600383aad7a97ba014559a5"
},
"downloads": -1,
"filename": "mahotas-1.4.18-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "4f225cbfbc499716240fa9abdc4f93e2",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 1731148,
"upload_time": "2024-07-17T21:11:39",
"upload_time_iso_8601": "2024-07-17T21:11:39.504163Z",
"url": "https://files.pythonhosted.org/packages/7d/5a/2e89a81a018fa77c269cf45ffe99e2ccc756db4ca53ed25d2fb321d76537/mahotas-1.4.18-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4c95b0ba363011e6f66b0b529f695a1f5ef65732d18a3828badf95d74f7c47ce",
"md5": "6b8433659ff683154bb787d1cb864a2a",
"sha256": "29880589cf567468af5b186581736609f8916656d37806dc03f5a1be57766d08"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "6b8433659ff683154bb787d1cb864a2a",
"packagetype": "bdist_wheel",
"python_version": "pp38",
"requires_python": null,
"size": 1790931,
"upload_time": "2024-07-17T21:11:41",
"upload_time_iso_8601": "2024-07-17T21:11:41.175896Z",
"url": "https://files.pythonhosted.org/packages/4c/95/b0ba363011e6f66b0b529f695a1f5ef65732d18a3828badf95d74f7c47ce/mahotas-1.4.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3c91bd063b061ff034d284c83aea92d88273f4eb3b0c7ecc24ac0f7ee9960068",
"md5": "f2095f91cab0b2dc7f6cb46a322052f3",
"sha256": "e341bad751bf21ceb6366b54bcdd8c2e011359d4176429f91dc9c3ed4ad3e71e"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp38-pypy38_pp73-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f2095f91cab0b2dc7f6cb46a322052f3",
"packagetype": "bdist_wheel",
"python_version": "pp38",
"requires_python": null,
"size": 1742576,
"upload_time": "2024-07-17T21:11:42",
"upload_time_iso_8601": "2024-07-17T21:11:42.954670Z",
"url": "https://files.pythonhosted.org/packages/3c/91/bd063b061ff034d284c83aea92d88273f4eb3b0c7ecc24ac0f7ee9960068/mahotas-1.4.18-pp38-pypy38_pp73-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e4008cc39b6b36190cff713b27c28f04c3453a4a91ae1e057a922c4ccb7ce4e9",
"md5": "25e2bd375225d813c761dce2a13514d5",
"sha256": "8b5ab55982dcbe6664c090ca1b58ac8820735d6e166ee81b380f2eec2307ce08"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "25e2bd375225d813c761dce2a13514d5",
"packagetype": "bdist_wheel",
"python_version": "pp38",
"requires_python": null,
"size": 1853835,
"upload_time": "2024-07-17T21:11:44",
"upload_time_iso_8601": "2024-07-17T21:11:44.775628Z",
"url": "https://files.pythonhosted.org/packages/e4/00/8cc39b6b36190cff713b27c28f04c3453a4a91ae1e057a922c4ccb7ce4e9/mahotas-1.4.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "69c7ea781abd3b3656633762c2f4d3c55260d16b5932d20202a3863cf4b644fd",
"md5": "084f57c71bf0694d9096fe5ab007add7",
"sha256": "c260450a28eed8abfcf861dd8752151ab7a9bfaeedd93be50f5a1b79ba82a1f0"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp38-pypy38_pp73-win_amd64.whl",
"has_sig": false,
"md5_digest": "084f57c71bf0694d9096fe5ab007add7",
"packagetype": "bdist_wheel",
"python_version": "pp38",
"requires_python": null,
"size": 1728688,
"upload_time": "2024-07-17T21:11:46",
"upload_time_iso_8601": "2024-07-17T21:11:46.406133Z",
"url": "https://files.pythonhosted.org/packages/69/c7/ea781abd3b3656633762c2f4d3c55260d16b5932d20202a3863cf4b644fd/mahotas-1.4.18-pp38-pypy38_pp73-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2c619e6eb28471de73bce7d0f3529eeab3f715d78b536fcc5ef6ea5a475821cc",
"md5": "3e8fd886bcf24c1f3235ac6ecb2e2e66",
"sha256": "16aaa64cfb09782212ecb1072c5367f5d8d4c8494dd9bae1d4af7243ebebd07e"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp39-pypy39_pp73-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "3e8fd886bcf24c1f3235ac6ecb2e2e66",
"packagetype": "bdist_wheel",
"python_version": "pp39",
"requires_python": null,
"size": 1795961,
"upload_time": "2024-07-17T21:11:48",
"upload_time_iso_8601": "2024-07-17T21:11:48.269974Z",
"url": "https://files.pythonhosted.org/packages/2c/61/9e6eb28471de73bce7d0f3529eeab3f715d78b536fcc5ef6ea5a475821cc/mahotas-1.4.18-pp39-pypy39_pp73-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cd4287136b2c60e74cf9d4c5625d997089dd3d1df7edf77ab18026250ea17eec",
"md5": "fa2537578b20ad2cdc156e14fcfcc284",
"sha256": "72a98e4b22238e3cc5598b07ee8f4955f4d8cd4c3cb40388cfef96968079f813"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp39-pypy39_pp73-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "fa2537578b20ad2cdc156e14fcfcc284",
"packagetype": "bdist_wheel",
"python_version": "pp39",
"requires_python": null,
"size": 1745700,
"upload_time": "2024-07-17T21:11:50",
"upload_time_iso_8601": "2024-07-17T21:11:50.581331Z",
"url": "https://files.pythonhosted.org/packages/cd/42/87136b2c60e74cf9d4c5625d997089dd3d1df7edf77ab18026250ea17eec/mahotas-1.4.18-pp39-pypy39_pp73-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "916b9a2234246d59a50a151f813b7eeb0ff4a633a4a0e020c33b64f4c323bf5f",
"md5": "8e14aa41f9275297151ebfbf7014f654",
"sha256": "ccd7d857ad59ee33f2359c8dab56b5d93d8476b7228f3cc00465f6d804c14015"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8e14aa41f9275297151ebfbf7014f654",
"packagetype": "bdist_wheel",
"python_version": "pp39",
"requires_python": null,
"size": 1851101,
"upload_time": "2024-07-17T21:11:52",
"upload_time_iso_8601": "2024-07-17T21:11:52.644578Z",
"url": "https://files.pythonhosted.org/packages/91/6b/9a2234246d59a50a151f813b7eeb0ff4a633a4a0e020c33b64f4c323bf5f/mahotas-1.4.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "98fa33d12523dbf8c9e9a2f573c1d5035bb6b536a982edcc4604b32f1858ddaa",
"md5": "b855a4dedb5807fd2d8de16b48a36492",
"sha256": "bb9e75ee04420dacd06129039d6618dfec19604ba8bef6aba596f54a19f9a91e"
},
"downloads": -1,
"filename": "mahotas-1.4.18-pp39-pypy39_pp73-win_amd64.whl",
"has_sig": false,
"md5_digest": "b855a4dedb5807fd2d8de16b48a36492",
"packagetype": "bdist_wheel",
"python_version": "pp39",
"requires_python": null,
"size": 1731539,
"upload_time": "2024-07-17T21:11:54",
"upload_time_iso_8601": "2024-07-17T21:11:54.634769Z",
"url": "https://files.pythonhosted.org/packages/98/fa/33d12523dbf8c9e9a2f573c1d5035bb6b536a982edcc4604b32f1858ddaa/mahotas-1.4.18-pp39-pypy39_pp73-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f671bf99df8458c0ca05cb9a16f400e66c09b37b15ea124aaa3becb577555cc5",
"md5": "4cc92771775dc99438e73324c447c805",
"sha256": "e6bd2eea4143a24f381b30c64078503cd8ffa20ca493e39ffa29f9d024d9cf8b"
},
"downloads": -1,
"filename": "mahotas-1.4.18.tar.gz",
"has_sig": false,
"md5_digest": "4cc92771775dc99438e73324c447c805",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 1533222,
"upload_time": "2024-07-17T21:11:56",
"upload_time_iso_8601": "2024-07-17T21:11:56.204164Z",
"url": "https://files.pythonhosted.org/packages/f6/71/bf99df8458c0ca05cb9a16f400e66c09b37b15ea124aaa3becb577555cc5/mahotas-1.4.18.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-17 21:11:56",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "mahotas"
}