[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# MambaByte
Implementation of MambaByte in "MambaByte: Token-free Selective State Space Model" in Pytorch and Zeta. Note this will be a higher performance implementation of Mamba with parallel scan
## Installation
```bash
pip install mambabyte
```
# Usage
```python
import torch
from mambabyte import MambaConfig, Mamba
x = torch.randn(2, 3, 4)
config = MambaConfig(
dim = 4,
depth = 3,
dt_rank = 2,
d_state = 2,
expand_factor = 2,
d_conv = 3,
dt_min = 0.001,
dt_max = 0.1,
dt_init = "random",
dt_scale = 1.0,
bias = False,
conv_bias = True,
pscan = True
)
model = Mamba(config)
out = model(x)
print(out)
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/MambaByte",
"name": "mambabyte",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/7d/2e/a060a4da585b800439adeadf3d692a0d5d61a1b59ae823f8d6a850461da4/mambabyte-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n\n# MambaByte\nImplementation of MambaByte in \"MambaByte: Token-free Selective State Space Model\" in Pytorch and Zeta. Note this will be a higher performance implementation of Mamba with parallel scan \n\n\n## Installation\n\n```bash\npip install mambabyte\n```\n\n# Usage\n```python\nimport torch \nfrom mambabyte import MambaConfig, Mamba\n\nx = torch.randn(2, 3, 4)\nconfig = MambaConfig(\n dim = 4,\n depth = 3,\n dt_rank = 2,\n d_state = 2,\n expand_factor = 2,\n d_conv = 3,\n dt_min = 0.001,\n dt_max = 0.1,\n dt_init = \"random\",\n dt_scale = 1.0,\n bias = False,\n conv_bias = True,\n pscan = True\n)\n\nmodel = Mamba(config)\n\nout = model(x)\n\nprint(out)\n\n```\n\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "MambaByte - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/MambaByte",
"Homepage": "https://github.com/kyegomez/MambaByte",
"Repository": "https://github.com/kyegomez/MambaByte"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "06a7a79de0f8b0e09fc430f168a222946d50f5d7842b07655d7865b67dd22272",
"md5": "c787007ccbb1294eee1f8e716dc24dd5",
"sha256": "1545a1276449a9d5cb3a0f3ee65779a6b6a48e701699e734a95822d22c9f59cb"
},
"downloads": -1,
"filename": "mambabyte-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c787007ccbb1294eee1f8e716dc24dd5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 6937,
"upload_time": "2024-01-26T01:45:16",
"upload_time_iso_8601": "2024-01-26T01:45:16.594781Z",
"url": "https://files.pythonhosted.org/packages/06/a7/a79de0f8b0e09fc430f168a222946d50f5d7842b07655d7865b67dd22272/mambabyte-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7d2ea060a4da585b800439adeadf3d692a0d5d61a1b59ae823f8d6a850461da4",
"md5": "97966bbbb548de331358c0c8d4e4fdcf",
"sha256": "47a27a4b659d8ec3b145bbac8fb1d67001faceaac29b78fa8e983ff46ff5b0d3"
},
"downloads": -1,
"filename": "mambabyte-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "97966bbbb548de331358c0c8d4e4fdcf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 7041,
"upload_time": "2024-01-26T01:45:18",
"upload_time_iso_8601": "2024-01-26T01:45:18.228223Z",
"url": "https://files.pythonhosted.org/packages/7d/2e/a060a4da585b800439adeadf3d692a0d5d61a1b59ae823f8d6a850461da4/mambabyte-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-26 01:45:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "MambaByte",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "mambabyte"
}