MAPIE


NameMAPIE JSON
Version 0.9.1 PyPI version JSON
download
home_pagehttps://github.com/scikit-learn-contrib/MAPIE
SummaryA scikit-learn-compatible module for estimating prediction intervals.
upload_time2024-09-13 08:23:18
maintainerT. Cordier, V. Blot, L. Lacombe
docs_urlNone
authorNone
requires_python>=3.7
licensenew BSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            .. -*- mode: rst -*-

|GitHubActions| |Codecov| |ReadTheDocs| |License| |PythonVersion| |PyPi| |Conda| |Release| |Commits| |DOI|

.. |GitHubActions| image:: https://github.com/scikit-learn-contrib/MAPIE/actions/workflows/test.yml/badge.svg
    :target: https://github.com/scikit-learn-contrib/MAPIE/actions

.. |Codecov| image:: https://codecov.io/gh/scikit-learn-contrib/MAPIE/branch/master/graph/badge.svg?token=F2S6KYH4V1
   :target: https://codecov.io/gh/scikit-learn-contrib/MAPIE

.. |ReadTheDocs| image:: https://readthedocs.org/projects/mapie/badge/?version=stable
    :target: https://mapie.readthedocs.io/en/stable/?badge=stable
    :alt: Documentation Status

.. |License| image:: https://img.shields.io/github/license/scikit-learn-contrib/MAPIE
    :target: https://github.com/scikit-learn-contrib/MAPIE/blob/master/LICENSE

.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/mapie
    :target: https://pypi.org/project/mapie/

.. |PyPi| image:: https://img.shields.io/pypi/v/mapie
    :target: https://pypi.org/project/mapie/

.. |Conda| image:: https://img.shields.io/conda/vn/conda-forge/mapie
    :target: https://anaconda.org/conda-forge/mapie

.. |Release| image:: https://img.shields.io/github/v/release/scikit-learn-contrib/mapie
    :target: https://github.com/scikit-learn-contrib/MAPIE/releases

.. |Commits| image:: https://img.shields.io/github/commits-since/scikit-learn-contrib/mapie/latest/master
    :target: https://github.com/scikit-learn-contrib/MAPIE/commits/master

.. |DOI| image:: https://img.shields.io/badge/10.48550/arXiv.2207.12274-B31B1B.svg
    :target: https://arxiv.org/abs/2207.12274

.. image:: https://github.com/scikit-learn-contrib/MAPIE/raw/master/doc/images/mapie_logo_nobg_cut.png
    :width: 400
    :align: center



MAPIE - Model Agnostic Prediction Interval Estimator
====================================================

**MAPIE** is an open-source Python library for quantifying uncertainties and controlling the risks of machine learning models.
It is a scikit-learn-contrib project that allows you to:

- Easily **compute conformal prediction intervals** (or prediction sets) with controlled (or guaranteed) marginal coverage rate
  for regression [3,4,8], classification (binary and multi-class) [5-7] and time series [9].
- Easily **control risks** of more complex tasks such as multi-label classification,
  semantic segmentation in computer vision (probabilistic guarantees on recall, precision, ...) [10-12].
- Easily **wrap any model (scikit-learn, tensorflow, pytorch, ...) with, if needed, a scikit-learn-compatible wrapper**
  for the purposes just mentioned.

Here's a quick instantiation of MAPIE models for regression and classification problems related to uncertainty quantification
(more details in the Quickstart section):

.. code:: python

    # Uncertainty quantification for regression problem
    from mapie.regression import MapieRegressor
    mapie_regressor = MapieRegressor(estimator=regressor, method='plus', cv=5)

.. code:: python

    # Uncertainty quantification for classification problem
    from mapie.classification import MapieClassifier
    mapie_classifier = MapieClassifier(estimator=classifier, method='score', cv=5)

Implemented methods in **MAPIE** respect three fundamental pillars:

- They are **model and use case agnostic**, 
- They possess **theoretical guarantees** under minimal assumptions on the data and the model,
- They are based on **peer-reviewed algorithms** and respect programming standards.

**MAPIE** relies notably on the field of *Conformal Prediction* and *Distribution-Free Inference*.


🔗 Requirements
===============

- **MAPIE** runs on Python 3.7+.
- **MAPIE** stands on the shoulders of giants. Its only internal dependencies are `scikit-learn <https://scikit-learn.org/stable/>`_ and `numpy=>1.21 <https://numpy.org/>`_.


🛠 Installation
===============

**MAPIE** can be installed in different ways:

.. code:: sh

    $ pip install mapie  # installation via `pip`
    $ conda install -c conda-forge mapie  # or via `conda`
    $ pip install git+https://github.com/scikit-learn-contrib/MAPIE  # or directly from the github repository


⚡ Quickstart
=============

Here we propose two basic uncertainty quantification problems for regression and classification tasks with scikit-learn.

As **MAPIE** is compatible with the standard scikit-learn API, you can see that with just these few lines of code:

- How easy it is **to wrap your favorite scikit-learn-compatible model** around your model.
- How easy it is **to follow the standard sequential** ``fit`` and ``predict`` process like any scikit-learn estimator.

.. code:: python

    # Uncertainty quantification for regression problem
    import numpy as np
    from sklearn.linear_model import LinearRegression
    from sklearn.datasets import make_regression
    from sklearn.model_selection import train_test_split

    from mapie.regression import MapieRegressor


    X, y = make_regression(n_samples=500, n_features=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

    regressor = LinearRegression()

    mapie_regressor = MapieRegressor(estimator=regressor, method='plus', cv=5)

    mapie_regressor = mapie_regressor.fit(X_train, y_train)
    y_pred, y_pis = mapie_regressor.predict(X_test, alpha=[0.05, 0.32])

.. code:: python

    # Uncertainty quantification for classification problem
    import numpy as np
    from sklearn.linear_model import LogisticRegression
    from sklearn.datasets import make_blobs
    from sklearn.model_selection import train_test_split

    from mapie.classification import MapieClassifier


    X, y = make_blobs(n_samples=500, n_features=2, centers=3)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

    classifier = LogisticRegression()

    mapie_classifier = MapieClassifier(estimator=classifier, method='score', cv=5)

    mapie_classifier = mapie_classifier.fit(X_train, y_train)
    y_pred, y_pis = mapie_classifier.predict(X_test, alpha=[0.05, 0.32])


📘 Documentation
================

The full documentation can be found `on this link <https://mapie.readthedocs.io/en/latest/>`_.


📝 Contributing
===============

You are welcome to propose and contribute new ideas.
We encourage you to `open an issue <https://github.com/scikit-learn-contrib/MAPIE/issues>`_ so that we can align on the work to be done.
It is generally a good idea to have a quick discussion before opening a pull request that is potentially out-of-scope.
For more information on the contribution process, please go `here <CONTRIBUTING.rst>`_.


🤝  Affiliations
================

MAPIE has been developed through a collaboration between Capgemini, Quantmetry, Michelin, ENS Paris-Saclay,
and with the financial support from Région Ile de France and Confiance.ai.

|Capgemini| |Quantmetry| |Michelin| |ENS| |Confiance.ai| |IledeFrance|

.. |Capgemini| image:: https://www.capgemini.com/wp-content/themes/capgemini2020/assets/images/logo.svg
    :height: 35px
    :width: 140px
    :target: https://www.capgemini.com/

.. |Quantmetry| image:: https://www.quantmetry.com/wp-content/uploads/2020/08/08-Logo-quant-Texte-noir.svg
    :height: 35px
    :width: 140px
    :target: https://www.quantmetry.com/

.. |Michelin| image:: https://agngnconpm.cloudimg.io/v7/https://dgaddcosprod.blob.core.windows.net/corporate-production/attachments/cls05tqdd9e0o0tkdghwi9m7n-clooe1x0c3k3x0tlu4cxi6dpn-bibendum-salut.full.png
    :height: 50px
    :width: 45px
    :target: https://www.michelin.com/en/

.. |ENS| image:: https://file.diplomeo-static.com/file/00/00/01/34/13434.svg
    :height: 35px
    :width: 140px
    :target: https://ens-paris-saclay.fr/en/

.. |Confiance.ai| image:: https://pbs.twimg.com/profile_images/1443838558549258264/EvWlv1Vq_400x400.jpg
    :height: 45px
    :width: 45px
    :target: https://www.confiance.ai/

.. |IledeFrance| image:: https://www.iledefrance.fr/sites/default/files/logo/2024-02/logoGagnerok.svg
    :height: 35px
    :width: 140px
    :target: https://www.iledefrance.fr/


🔍  References
==============

[1] Vovk, Vladimir, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World. Springer Nature, 2022.

[2] Angelopoulos, Anastasios N., and Stephen Bates. "Conformal prediction: A gentle introduction." Foundations and Trends® in Machine Learning 16.4 (2023): 494-591.

[3] Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. "Predictive inference with the jackknife+." Ann. Statist., 49(1):486–507, (2021).

[4] Kim, Byol, Chen Xu, and Rina Barber. "Predictive inference is free with the jackknife+-after-bootstrap." Advances in Neural Information Processing Systems 33 (2020): 4138-4149.

[5] Sadinle, Mauricio, Jing Lei, and Larry Wasserman. "Least ambiguous set-valued classifiers with bounded error levels." Journal of the American Statistical Association 114.525 (2019): 223-234.

[6] Romano, Yaniv, Matteo Sesia, and Emmanuel Candes. "Classification with valid and adaptive coverage." Advances in Neural Information Processing Systems 33 (2020): 3581-3591.

[7] Angelopoulos, Anastasios, et al. "Uncertainty sets for image classifiers using conformal prediction." International Conference on Learning Representations (2021).

[8] Romano, Yaniv, Evan Patterson, and Emmanuel Candes. "Conformalized quantile regression." Advances in neural information processing systems 32 (2019).

[9] Xu, Chen, and Yao Xie. "Conformal prediction interval for dynamic time-series." International Conference on Machine Learning. PMLR, (2021).

[10] Bates, Stephen, et al. "Distribution-free, risk-controlling prediction sets." Journal of the ACM (JACM) 68.6 (2021): 1-34.

[11] Angelopoulos, Anastasios N., Stephen, Bates, Adam, Fisch, Lihua, Lei, and Tal, Schuster. "Conformal Risk Control." (2022).

[12] Angelopoulos, Anastasios N., Stephen, Bates, Emmanuel J. Candès, et al. "Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control." (2022).


📝 License
==========

MAPIE is free and open-source software licensed under the `license <https://github.com/scikit-learn-contrib/MAPIE/blob/master/LICENSE>`_.


📚 Citation
===========

If you use MAPIE in your research, please cite using:

.. code:: latex

    @inproceedings{Cordier_Flexible_and_Systematic_2023,
    author = {Cordier, Thibault and Blot, Vincent and Lacombe, Louis and Morzadec, Thomas and Capitaine, Arnaud and Brunel, Nicolas},
    booktitle = {Conformal and Probabilistic Prediction with Applications},
    title = {{Flexible and Systematic Uncertainty Estimation with Conformal Prediction via the MAPIE library}},
    year = {2023}
    }

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/scikit-learn-contrib/MAPIE",
    "name": "MAPIE",
    "maintainer": "T. Cordier, V. Blot, L. Lacombe",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "thibault.a.cordier@capgemini.com, vincent.blot@capgemini.com, louis.lacombe@capgemini.com",
    "keywords": null,
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/cd/03/ad89a907d88a2df23781e398e9c678bd2e24c7cf1d29231c2aba21f0a9c3/MAPIE-0.9.1.tar.gz",
    "platform": null,
    "description": ".. -*- mode: rst -*-\n\n|GitHubActions| |Codecov| |ReadTheDocs| |License| |PythonVersion| |PyPi| |Conda| |Release| |Commits| |DOI|\n\n.. |GitHubActions| image:: https://github.com/scikit-learn-contrib/MAPIE/actions/workflows/test.yml/badge.svg\n    :target: https://github.com/scikit-learn-contrib/MAPIE/actions\n\n.. |Codecov| image:: https://codecov.io/gh/scikit-learn-contrib/MAPIE/branch/master/graph/badge.svg?token=F2S6KYH4V1\n   :target: https://codecov.io/gh/scikit-learn-contrib/MAPIE\n\n.. |ReadTheDocs| image:: https://readthedocs.org/projects/mapie/badge/?version=stable\n    :target: https://mapie.readthedocs.io/en/stable/?badge=stable\n    :alt: Documentation Status\n\n.. |License| image:: https://img.shields.io/github/license/scikit-learn-contrib/MAPIE\n    :target: https://github.com/scikit-learn-contrib/MAPIE/blob/master/LICENSE\n\n.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/mapie\n    :target: https://pypi.org/project/mapie/\n\n.. |PyPi| image:: https://img.shields.io/pypi/v/mapie\n    :target: https://pypi.org/project/mapie/\n\n.. |Conda| image:: https://img.shields.io/conda/vn/conda-forge/mapie\n    :target: https://anaconda.org/conda-forge/mapie\n\n.. |Release| image:: https://img.shields.io/github/v/release/scikit-learn-contrib/mapie\n    :target: https://github.com/scikit-learn-contrib/MAPIE/releases\n\n.. |Commits| image:: https://img.shields.io/github/commits-since/scikit-learn-contrib/mapie/latest/master\n    :target: https://github.com/scikit-learn-contrib/MAPIE/commits/master\n\n.. |DOI| image:: https://img.shields.io/badge/10.48550/arXiv.2207.12274-B31B1B.svg\n    :target: https://arxiv.org/abs/2207.12274\n\n.. image:: https://github.com/scikit-learn-contrib/MAPIE/raw/master/doc/images/mapie_logo_nobg_cut.png\n    :width: 400\n    :align: center\n\n\n\nMAPIE - Model Agnostic Prediction Interval Estimator\n====================================================\n\n**MAPIE** is an open-source Python library for quantifying uncertainties and controlling the risks of machine learning models.\nIt is a scikit-learn-contrib project that allows you to:\n\n- Easily **compute conformal prediction intervals** (or prediction sets) with controlled (or guaranteed) marginal coverage rate\n  for regression [3,4,8], classification (binary and multi-class) [5-7] and time series [9].\n- Easily **control risks** of more complex tasks such as multi-label classification,\n  semantic segmentation in computer vision (probabilistic guarantees on recall, precision, ...) [10-12].\n- Easily **wrap any model (scikit-learn, tensorflow, pytorch, ...) with, if needed, a scikit-learn-compatible wrapper**\n  for the purposes just mentioned.\n\nHere's a quick instantiation of MAPIE models for regression and classification problems related to uncertainty quantification\n(more details in the Quickstart section):\n\n.. code:: python\n\n    # Uncertainty quantification for regression problem\n    from mapie.regression import MapieRegressor\n    mapie_regressor = MapieRegressor(estimator=regressor, method='plus', cv=5)\n\n.. code:: python\n\n    # Uncertainty quantification for classification problem\n    from mapie.classification import MapieClassifier\n    mapie_classifier = MapieClassifier(estimator=classifier, method='score', cv=5)\n\nImplemented methods in **MAPIE** respect three fundamental pillars:\n\n- They are **model and use case agnostic**, \n- They possess **theoretical guarantees** under minimal assumptions on the data and the model,\n- They are based on **peer-reviewed algorithms** and respect programming standards.\n\n**MAPIE** relies notably on the field of *Conformal Prediction* and *Distribution-Free Inference*.\n\n\n\ud83d\udd17 Requirements\n===============\n\n- **MAPIE** runs on Python 3.7+.\n- **MAPIE** stands on the shoulders of giants. Its only internal dependencies are `scikit-learn <https://scikit-learn.org/stable/>`_ and `numpy=>1.21 <https://numpy.org/>`_.\n\n\n\ud83d\udee0 Installation\n===============\n\n**MAPIE** can be installed in different ways:\n\n.. code:: sh\n\n    $ pip install mapie  # installation via `pip`\n    $ conda install -c conda-forge mapie  # or via `conda`\n    $ pip install git+https://github.com/scikit-learn-contrib/MAPIE  # or directly from the github repository\n\n\n\u26a1 Quickstart\n=============\n\nHere we propose two basic uncertainty quantification problems for regression and classification tasks with scikit-learn.\n\nAs **MAPIE** is compatible with the standard scikit-learn API, you can see that with just these few lines of code:\n\n- How easy it is **to wrap your favorite scikit-learn-compatible model** around your model.\n- How easy it is **to follow the standard sequential** ``fit`` and ``predict`` process like any scikit-learn estimator.\n\n.. code:: python\n\n    # Uncertainty quantification for regression problem\n    import numpy as np\n    from sklearn.linear_model import LinearRegression\n    from sklearn.datasets import make_regression\n    from sklearn.model_selection import train_test_split\n\n    from mapie.regression import MapieRegressor\n\n\n    X, y = make_regression(n_samples=500, n_features=1)\n    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)\n\n    regressor = LinearRegression()\n\n    mapie_regressor = MapieRegressor(estimator=regressor, method='plus', cv=5)\n\n    mapie_regressor = mapie_regressor.fit(X_train, y_train)\n    y_pred, y_pis = mapie_regressor.predict(X_test, alpha=[0.05, 0.32])\n\n.. code:: python\n\n    # Uncertainty quantification for classification problem\n    import numpy as np\n    from sklearn.linear_model import LogisticRegression\n    from sklearn.datasets import make_blobs\n    from sklearn.model_selection import train_test_split\n\n    from mapie.classification import MapieClassifier\n\n\n    X, y = make_blobs(n_samples=500, n_features=2, centers=3)\n    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)\n\n    classifier = LogisticRegression()\n\n    mapie_classifier = MapieClassifier(estimator=classifier, method='score', cv=5)\n\n    mapie_classifier = mapie_classifier.fit(X_train, y_train)\n    y_pred, y_pis = mapie_classifier.predict(X_test, alpha=[0.05, 0.32])\n\n\n\ud83d\udcd8 Documentation\n================\n\nThe full documentation can be found `on this link <https://mapie.readthedocs.io/en/latest/>`_.\n\n\n\ud83d\udcdd Contributing\n===============\n\nYou are welcome to propose and contribute new ideas.\nWe encourage you to `open an issue <https://github.com/scikit-learn-contrib/MAPIE/issues>`_ so that we can align on the work to be done.\nIt is generally a good idea to have a quick discussion before opening a pull request that is potentially out-of-scope.\nFor more information on the contribution process, please go `here <CONTRIBUTING.rst>`_.\n\n\n\ud83e\udd1d  Affiliations\n================\n\nMAPIE has been developed through a collaboration between Capgemini, Quantmetry, Michelin, ENS Paris-Saclay,\nand with the financial support from R\u00e9gion Ile de France and Confiance.ai.\n\n|Capgemini| |Quantmetry| |Michelin| |ENS| |Confiance.ai| |IledeFrance|\n\n.. |Capgemini| image:: https://www.capgemini.com/wp-content/themes/capgemini2020/assets/images/logo.svg\n    :height: 35px\n    :width: 140px\n    :target: https://www.capgemini.com/\n\n.. |Quantmetry| image:: https://www.quantmetry.com/wp-content/uploads/2020/08/08-Logo-quant-Texte-noir.svg\n    :height: 35px\n    :width: 140px\n    :target: https://www.quantmetry.com/\n\n.. |Michelin| image:: https://agngnconpm.cloudimg.io/v7/https://dgaddcosprod.blob.core.windows.net/corporate-production/attachments/cls05tqdd9e0o0tkdghwi9m7n-clooe1x0c3k3x0tlu4cxi6dpn-bibendum-salut.full.png\n    :height: 50px\n    :width: 45px\n    :target: https://www.michelin.com/en/\n\n.. |ENS| image:: https://file.diplomeo-static.com/file/00/00/01/34/13434.svg\n    :height: 35px\n    :width: 140px\n    :target: https://ens-paris-saclay.fr/en/\n\n.. |Confiance.ai| image:: https://pbs.twimg.com/profile_images/1443838558549258264/EvWlv1Vq_400x400.jpg\n    :height: 45px\n    :width: 45px\n    :target: https://www.confiance.ai/\n\n.. |IledeFrance| image:: https://www.iledefrance.fr/sites/default/files/logo/2024-02/logoGagnerok.svg\n    :height: 35px\n    :width: 140px\n    :target: https://www.iledefrance.fr/\n\n\n\ud83d\udd0d  References\n==============\n\n[1] Vovk, Vladimir, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World. Springer Nature, 2022.\n\n[2] Angelopoulos, Anastasios N., and Stephen Bates. \"Conformal prediction: A gentle introduction.\" Foundations and Trends\u00ae in Machine Learning 16.4 (2023): 494-591.\n\n[3] Rina Foygel Barber, Emmanuel J. Cand\u00e8s, Aaditya Ramdas, and Ryan J. Tibshirani. \"Predictive inference with the jackknife+.\" Ann. Statist., 49(1):486\u2013507, (2021).\n\n[4] Kim, Byol, Chen Xu, and Rina Barber. \"Predictive inference is free with the jackknife+-after-bootstrap.\" Advances in Neural Information Processing Systems 33 (2020): 4138-4149.\n\n[5] Sadinle, Mauricio, Jing Lei, and Larry Wasserman. \"Least ambiguous set-valued classifiers with bounded error levels.\" Journal of the American Statistical Association 114.525 (2019): 223-234.\n\n[6] Romano, Yaniv, Matteo Sesia, and Emmanuel Candes. \"Classification with valid and adaptive coverage.\" Advances in Neural Information Processing Systems 33 (2020): 3581-3591.\n\n[7] Angelopoulos, Anastasios, et al. \"Uncertainty sets for image classifiers using conformal prediction.\" International Conference on Learning Representations (2021).\n\n[8] Romano, Yaniv, Evan Patterson, and Emmanuel Candes. \"Conformalized quantile regression.\" Advances in neural information processing systems 32 (2019).\n\n[9] Xu, Chen, and Yao Xie. \"Conformal prediction interval for dynamic time-series.\" International Conference on Machine Learning. PMLR, (2021).\n\n[10] Bates, Stephen, et al. \"Distribution-free, risk-controlling prediction sets.\" Journal of the ACM (JACM) 68.6 (2021): 1-34.\n\n[11] Angelopoulos, Anastasios N., Stephen, Bates, Adam, Fisch, Lihua, Lei, and Tal, Schuster. \"Conformal Risk Control.\" (2022).\n\n[12] Angelopoulos, Anastasios N., Stephen, Bates, Emmanuel J. Cand\u00e8s, et al. \"Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control.\" (2022).\n\n\n\ud83d\udcdd License\n==========\n\nMAPIE is free and open-source software licensed under the `license <https://github.com/scikit-learn-contrib/MAPIE/blob/master/LICENSE>`_.\n\n\n\ud83d\udcda Citation\n===========\n\nIf you use MAPIE in your research, please cite using:\n\n.. code:: latex\n\n    @inproceedings{Cordier_Flexible_and_Systematic_2023,\n    author = {Cordier, Thibault and Blot, Vincent and Lacombe, Louis and Morzadec, Thomas and Capitaine, Arnaud and Brunel, Nicolas},\n    booktitle = {Conformal and Probabilistic Prediction with Applications},\n    title = {{Flexible and Systematic Uncertainty Estimation with Conformal Prediction via the MAPIE library}},\n    year = {2023}\n    }\n",
    "bugtrack_url": null,
    "license": "new BSD",
    "summary": "A scikit-learn-compatible module for estimating prediction intervals.",
    "version": "0.9.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/scikit-learn-contrib/MAPIE/issues",
        "Documentation": "https://mapie.readthedocs.io/en/latest/",
        "Download": "https://pypi.org/project/MAPIE/#files",
        "Homepage": "https://github.com/scikit-learn-contrib/MAPIE",
        "Source Code": "https://github.com/scikit-learn-contrib/MAPIE"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "972a03562d9419a2e026e54ed9956db50d710b65bde8ab14f8648de03d65adbe",
                "md5": "db1446e44d54156794982001bf5a26b9",
                "sha256": "1423fd3e4fa9ad31ef838d83d1c7d0003654cd8cd5f6a9c455723f90e1a0f352"
            },
            "downloads": -1,
            "filename": "MAPIE-0.9.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "db1446e44d54156794982001bf5a26b9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 178600,
            "upload_time": "2024-09-13T08:23:16",
            "upload_time_iso_8601": "2024-09-13T08:23:16.350017Z",
            "url": "https://files.pythonhosted.org/packages/97/2a/03562d9419a2e026e54ed9956db50d710b65bde8ab14f8648de03d65adbe/MAPIE-0.9.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cd03ad89a907d88a2df23781e398e9c678bd2e24c7cf1d29231c2aba21f0a9c3",
                "md5": "87db081f2acb105bbc752e834579ddc7",
                "sha256": "465cf763d62a574fbb855232dd7222fa541c09fa9fdeaedcf6dae1fadcd7d8d3"
            },
            "downloads": -1,
            "filename": "MAPIE-0.9.1.tar.gz",
            "has_sig": false,
            "md5_digest": "87db081f2acb105bbc752e834579ddc7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 199463,
            "upload_time": "2024-09-13T08:23:18",
            "upload_time_iso_8601": "2024-09-13T08:23:18.239116Z",
            "url": "https://files.pythonhosted.org/packages/cd/03/ad89a907d88a2df23781e398e9c678bd2e24c7cf1d29231c2aba21f0a9c3/MAPIE-0.9.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-13 08:23:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scikit-learn-contrib",
    "github_project": "MAPIE",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "mapie"
}
        
Elapsed time: 0.82851s