maq


Namemaq JSON
Version 0.2 PyPI version JSON
download
home_pagehttps://github.com/prasannadate/maq
SummaryMachine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.
upload_time2024-04-01 23:15:17
maintainerNone
docs_urlNone
authorPrasanna Date, Kathleen Hamilton, Robert Patton, Travis Humble, Thomas Potok
requires_pythonNone
licenseBSD License
keywords adiabatic quantum machine learning quantum machine learning adiabatic quantum computing quantum computing machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/prasannadate/maq",
    "name": "maq",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Adiabatic Quantum Machine Learning, Quantum Machine Learning, Adiabatic Quantum Computing, Quantum Computing, Machine Learning",
    "author": "Prasanna Date, Kathleen Hamilton, Robert Patton, Travis Humble, Thomas Potok",
    "author_email": "datepa@ornl.gov",
    "download_url": "https://files.pythonhosted.org/packages/8c/61/501d6f06c5562360ec34731c1eddf50bb84b29d63956ed8bb379ef99731e/maq-0.2.tar.gz",
    "platform": null,
    "description": "Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.\n",
    "bugtrack_url": null,
    "license": "BSD License",
    "summary": "Machine Learning on Adiabatic Quantum Computers (MAQ) is a library of algorithms used to train machine learning models on adiabatic quantum computers.",
    "version": "0.2",
    "project_urls": {
        "Download": "https://github.com/prasannadate/maq/archive/refs/tags/v1.0.0.tar.gz",
        "Homepage": "https://github.com/prasannadate/maq",
        "Source": "https://github.com/prasannadate/maq"
    },
    "split_keywords": [
        "adiabatic quantum machine learning",
        " quantum machine learning",
        " adiabatic quantum computing",
        " quantum computing",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8c61501d6f06c5562360ec34731c1eddf50bb84b29d63956ed8bb379ef99731e",
                "md5": "78c58ea09b3371d5280ab241d7374922",
                "sha256": "53603a63a9a6850f42a8ee9f9a4bc5c2b39a442e3c4bb259b84707e580bd4a48"
            },
            "downloads": -1,
            "filename": "maq-0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "78c58ea09b3371d5280ab241d7374922",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1674,
            "upload_time": "2024-04-01T23:15:17",
            "upload_time_iso_8601": "2024-04-01T23:15:17.039231Z",
            "url": "https://files.pythonhosted.org/packages/8c/61/501d6f06c5562360ec34731c1eddf50bb84b29d63956ed8bb379ef99731e/maq-0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-01 23:15:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "prasannadate",
    "github_project": "maq",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "maq"
}
        
Elapsed time: 0.19984s