Name | marcel-fse JSON |
Version |
1.7
JSON |
| download |
home_page | None |
Summary | Library to get sentence vectors using SIF and uSIF |
upload_time | 2024-10-03 08:08:47 |
maintainer | None |
docs_url | None |
author | Marcel Tino |
requires_python | None |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[English](README.md) | [Español](./docs/README.es.md) | [Français](./docs/README.fr.md) | [Deutsch](./docs/README.de.md) | [中文](./docs/README.zh.md) | [Türkçe](./docs/README.tr.md) | [日本語](./docs/README.ja.md) | [한국어](./docs/README.ko.md)
## marcel_fse
A library will help to get sentence embedding scores for user dimensions
Developed by Marcel Tino @ 2024
You can use this to alter according to your requirements.
Credits to the author for developing such an amazing code
You can find the original code here
https://github.com/oborchers/Fast_Sentence_Embeddings
Fast Sentence Embeddings
==================================
Fast Sentence Embeddings is a Python library that serves as an addition to Gensim. This library is intended to compute *sentence vectors* for large collections of sentences or documents with as little hassle as possible:
```
from marcel_fse.models.view import get_sentence_scores
import pandas as pd
import gensim.downloader as api
from nltk.tokenize import word_tokenize
df= pd.read_excel(r'C:\Users\Marcel Tino\Desktop\economy.xlsx')
df=df[['Quote']]
model_name="word2vec-google-news-300"
custom_text="economy is good"
##df will return sentence embedding scores using SIF and df1 will return sentence embedding scores using uSIF
df,df1=get_sentence_scores(df,model_name,custom_text)
```
Installation
------------
The simple way to install **marcel_fse** is:
pip install -U marcel_fse
+ Share marcel_fse on these social media platforms if you like it!
[![Reddit](https://img.shields.io/badge/share%20on-reddit-red?style=flat-square&logo=reddit)](https://reddit.com/submit?url=https://github.com/Kanaries/pygwalker&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-like%20UI)
[![HackerNews](https://img.shields.io/badge/share%20on-hacker%20news-orange?style=flat-square&logo=ycombinator)](https://news.ycombinator.com/submitlink?u=https://github.com/Kanaries/pygwalker)
[![Twitter](https://img.shields.io/badge/share%20on-twitter-03A9F4?style=flat-square&logo=twitter)](https://twitter.com/share?url=https://github.com/Kanaries/pygwalker&text=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)
[![Facebook](https://img.shields.io/badge/share%20on-facebook-1976D2?style=flat-square&logo=facebook)](https://www.facebook.com/sharer/sharer.php?u=https://github.com/Kanaries/pygwalker)
[![LinkedIn](https://img.shields.io/badge/share%20on-linkedin-3949AB?style=flat-square&logo=linkedin)](https://www.linkedin.com/shareArticle?url=https://github.com/Kanaries/pygwalker&&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)
Raw data
{
"_id": null,
"home_page": null,
"name": "marcel-fse",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Marcel Tino",
"author_email": "<marceltino92@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/25/e6/3440cd8c37bfd05116ebd6c21ae7191013cf1dfc9de615c1703a5736a62f/marcel_fse-1.7.tar.gz",
"platform": null,
"description": "\r\n\r\n[English](README.md) | [Espa\u00f1ol](./docs/README.es.md) | [Fran\u00e7ais](./docs/README.fr.md) | [Deutsch](./docs/README.de.md) | [\u4e2d\u6587](./docs/README.zh.md) | [T\u00fcrk\u00e7e](./docs/README.tr.md) | [\u65e5\u672c\u8a9e](./docs/README.ja.md) | [\ud55c\uad6d\uc5b4](./docs/README.ko.md)\r\n\r\n## marcel_fse\r\n\r\nA library will help to get sentence embedding scores for user dimensions\r\n\r\nDeveloped by Marcel Tino @ 2024\r\n\r\nYou can use this to alter according to your requirements.\r\n\r\nCredits to the author for developing such an amazing code\r\n\r\nYou can find the original code here\r\n\r\nhttps://github.com/oborchers/Fast_Sentence_Embeddings\r\n\r\nFast Sentence Embeddings\r\n==================================\r\n\r\nFast Sentence Embeddings is a Python library that serves as an addition to Gensim. This library is intended to compute *sentence vectors* for large collections of sentences or documents with as little hassle as possible:\r\n\r\n```\r\n\r\nfrom marcel_fse.models.view import get_sentence_scores\r\n\r\nimport pandas as pd\r\nimport gensim.downloader as api\r\nfrom nltk.tokenize import word_tokenize\r\n\r\ndf= pd.read_excel(r'C:\\Users\\Marcel Tino\\Desktop\\economy.xlsx')\r\n\r\ndf=df[['Quote']]\r\n\r\nmodel_name=\"word2vec-google-news-300\"\r\ncustom_text=\"economy is good\"\r\n\r\n##df will return sentence embedding scores using SIF and df1 will return sentence embedding scores using uSIF\r\ndf,df1=get_sentence_scores(df,model_name,custom_text)\r\n\r\n\r\n```\r\n\r\n\r\nInstallation\r\n------------\r\nThe simple way to install **marcel_fse** is:\r\n\r\n pip install -U marcel_fse\r\n\r\n\r\n+ Share marcel_fse on these social media platforms if you like it!\r\n[![Reddit](https://img.shields.io/badge/share%20on-reddit-red?style=flat-square&logo=reddit)](https://reddit.com/submit?url=https://github.com/Kanaries/pygwalker&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-like%20UI)\r\n[![HackerNews](https://img.shields.io/badge/share%20on-hacker%20news-orange?style=flat-square&logo=ycombinator)](https://news.ycombinator.com/submitlink?u=https://github.com/Kanaries/pygwalker)\r\n[![Twitter](https://img.shields.io/badge/share%20on-twitter-03A9F4?style=flat-square&logo=twitter)](https://twitter.com/share?url=https://github.com/Kanaries/pygwalker&text=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)\r\n[![Facebook](https://img.shields.io/badge/share%20on-facebook-1976D2?style=flat-square&logo=facebook)](https://www.facebook.com/sharer/sharer.php?u=https://github.com/Kanaries/pygwalker)\r\n[![LinkedIn](https://img.shields.io/badge/share%20on-linkedin-3949AB?style=flat-square&logo=linkedin)](https://www.linkedin.com/shareArticle?url=https://github.com/Kanaries/pygwalker&&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)\r\n\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Library to get sentence vectors using SIF and uSIF",
"version": "1.7",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a6ec8b8a5dc264860f992168a32835706c465a7369933b35400f003959b0a960",
"md5": "307ae2984f15953a85658e98d51836cd",
"sha256": "b70d7da62c7e89cde65d201bc0f9ae5eb5503f026c8b97b5a009c867b85d91ea"
},
"downloads": -1,
"filename": "marcel_fse-1.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "307ae2984f15953a85658e98d51836cd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 29951,
"upload_time": "2024-10-03T08:08:45",
"upload_time_iso_8601": "2024-10-03T08:08:45.993253Z",
"url": "https://files.pythonhosted.org/packages/a6/ec/8b8a5dc264860f992168a32835706c465a7369933b35400f003959b0a960/marcel_fse-1.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "25e63440cd8c37bfd05116ebd6c21ae7191013cf1dfc9de615c1703a5736a62f",
"md5": "851de7e5b151eefa84f75d5e12224f22",
"sha256": "b8cc2f15294b5cd09924f4092e0b46e0ce7f0f3d11519927cb3db9c036bd1c57"
},
"downloads": -1,
"filename": "marcel_fse-1.7.tar.gz",
"has_sig": false,
"md5_digest": "851de7e5b151eefa84f75d5e12224f22",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 24661,
"upload_time": "2024-10-03T08:08:47",
"upload_time_iso_8601": "2024-10-03T08:08:47.251801Z",
"url": "https://files.pythonhosted.org/packages/25/e6/3440cd8c37bfd05116ebd6c21ae7191013cf1dfc9de615c1703a5736a62f/marcel_fse-1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-03 08:08:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "marcel-fse"
}