| Name | marearts-anpr JSON |
| Version |
3.6.5
JSON |
| download |
| home_page | https://www.marearts.com |
| Summary | MareArts ANPR (Automatic Number Plate Recognition) library |
| upload_time | 2025-11-08 11:18:36 |
| maintainer | None |
| docs_url | None |
| author | MareArts |
| requires_python | <3.13,>=3.9 |
| license | None |
| keywords |
|
| VCS |
|
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# MareArts ANPR SDK
[](https://badge.fury.io/py/marearts-anpr)
[](https://pypi.org/project/marearts-anpr/)
[](https://pepy.tech/project/marearts-anpr)
[](https://study.marearts.com/p/anpr-lpr-solution.html)
[](http://live.marearts.com)
Automatic Number Plate Recognition (ANPR) SDK for multiple regions with GPU acceleration support.
## Features
- ๐ **Multi-Region Support**: Korean, Europe+, North America, China, and Universal license plates
- ๐ **Dynamic Region Switching**: Change regions instantly with `set_region()` without model reload
- โก **GPU Acceleration**: CUDA, DirectML support for real-time processing
- ๐ฏ **High Accuracy**: Advanced models with regional vocabulary optimization
- ๐ฆ **Batch Processing**: Process multiple plates simultaneously
- ๐ณ **Production Ready**: Docker API with smart model caching and multi-architecture support
## Quick Start
### Installation
```bash
# CPU Installation
pip install marearts-anpr
# GPU Installation (CUDA, DirectML)
pip install marearts-anpr[gpu] # NVIDIA CUDA
pip install marearts-anpr[directml] # Windows GPU (AMD/Intel/NVIDIA)
```
๐ฆ [See complete installation guide](docs/installation.md)
### Basic Usage
๐ก **Model names**: See [models and benchmarks](docs/models.md) (e.g., `small_640p_fp32`, `small_fp32`)
```python
from marearts_anpr import ma_anpr_detector_v14, ma_anpr_ocr_v14, marearts_anpr_from_image_file
# Initialize detector
detector = ma_anpr_detector_v14(
"small_640p_fp32", # pico_640p_fp32, micro_640p_fp32, small_640p_fp32, medium_640p_fp32, large_640p_fp32
user_name,
serial_key,
signature,
backend="cuda", # cpu, cuda, directml (auto-selected if "auto")
conf_thres=0.25, # Detection confidence threshold (default: 0.25)
iou_thres=0.5 # IoU threshold for NMS (default: 0.5)
)
# Initialize OCR with regional vocabulary
ocr = ma_anpr_ocr_v14(
"small_fp32", # Model: pico_fp32, micro_fp32, small_fp32, medium_fp32, large_fp32
"univ", # Region: kr, eup, na, cn, univ (choose specific region for best accuracy)
user_name,
serial_key,
signature
)
# Process image
result = marearts_anpr_from_image_file(detector, ocr, "image.jpg")
print(result)
# Output: {'results': [{'ocr': 'ABC123', 'ocr_conf': 99, ...}], ...}
```
#### Dynamic Region Switching
Switch regions without reinitialization:
```python
ocr.set_region('eup') # Europe+
ocr.set_region('kr') # Korean
ocr.set_region('na') # North America
```
๐ [Learn more about dynamic region switching](docs/usage.md#dynamic-region-switching-370)
#### Multiple Input Formats & CLI
**From different image sources:**
```python
import cv2
from PIL import Image
from marearts_anpr import marearts_anpr_from_cv2, marearts_anpr_from_pil
result = marearts_anpr_from_cv2(detector, ocr, cv2.imread("image.jpg"))
result = marearts_anpr_from_pil(detector, ocr, Image.open("image.jpg"))
result = marearts_anpr_from_image_file(detector, ocr, "image.jpg")
```
**CLI commands:**
```bash
ma-anpr image.jpg # Process image
ma-anpr test-api image.jpg # Test API (1000/day limit)
ma-anpr validate # Validate license
```
๐ง [See complete usage examples and CLI reference](docs/usage.md)
## Model Performance
### Detector Performance
| Model Name | F1 Score | Speed CUDA | Speed CPU | Notes |
|-------|----------|------------|-----------|-------|
| pico_640p_fp32 | 93.08% | 68.7 FPS (14.5ms) | - | Fastest, smallest model |
| micro_640p_fp32 | 93.39% | 69.5 FPS (14.4ms) | - | Fast with good accuracy |
| small_640p_fp32 | 92.58% | 69.5 FPS (14.4ms) | - | Balanced performance |
| medium_640p_fp32 | 92.27% | 62.1 FPS (16.1ms) | - | Higher accuracy |
| large_640p_fp32 | 93.77% | 57.4 FPS (17.4ms) | - | ๐ฏ Highest F1 score |
### OCR Performance
*Average across all regions*
| Model Name | Exact Match | Char Accuracy | FPS | Notes |
|-------|-------------|---------------|-----|-------|
| pico_fp32 | 91.78% | 96.65% | 270 | Fastest, smallest |
| micro_fp32 | 91.86% | 96.50% | 262 | Fast with good accuracy |
| small_fp32 | 91.54% | 96.64% | **300** | โก Fastest inference |
| medium_fp32 | 90.36% | 96.45% | 270 | Balanced performance |
| **large_fp32** | **91.70%** | **96.27%** | 262 | ๐ฏ Best accuracy |
**Supported Regions**: Korean (`kr`), Europe+ (`eup`), North America (`na`), China (`cn`), Universal (`univ`)
๐ [See detailed benchmarks by region](docs/models.md)
## Regional Support
MareArts ANPR supports license plates from multiple regions with specialized vocabulary optimization:
- ๐ฐ๐ท **Korean (`kr`)** - Korean license plates with Hangul characters (best accuracy: 99.27%)
- ๐ช๐บ **Europe+ (`eup`)** - EU countries + Albania, Andorra, Bosnia & Herzegovina, Indonesia, and more
- ๐บ๐ธ **North America (`na`)** - USA and Canada license plates
- ๐จ๐ณ **China (`cn`)** - Chinese license plates with province codes
- ๐ **Universal (`univ`)** - All regions (default, but choose specific region for best accuracy)
๐ก **Dynamic Region Switching**: Use `ocr.set_region('kr')` to switch regions instantly without reloading the model, saving ~180 MB per additional region.
๐ [See complete regional support and character sets](docs/regional-support.md)
## Documentation
- ๐ฆ [Installation Guide](docs/installation.md) - Detailed installation options and requirements
- ๐ง [Usage Examples](docs/usage.md) - Python SDK, CLI usage, dynamic region switching, and environment variables
- ๐ป [Example Code](example_code/) - Basic, advanced, and batch processing examples
- ๐ [Model Versions](docs/models.md) - Available models, benchmarks, and performance metrics
- ๐ [Regional Support](docs/regional-support.md) - Supported countries and character sets
- ๐ณ [Docker Deployment](docs/docker.md) - Container setup, API server, and multi-architecture builds
- ๐งช [Try ANPR](docs/api-testing.md) - Test our ANPR without license (1000 requests/day)
- โ [FAQ](docs/faq.md) - Licensing, regions, features, and troubleshooting
## MareArts Ecosystem
Explore our AI toolkit:
- **marearts-anpr** - Automatic Number Plate Recognition ([GitHub](https://github.com/MareArts/MareArts-ANPR))
- **marearts-road-objects** - Road object detection for persons, vehicles, and 2-wheelers ([GitHub](https://github.com/MareArts/MareArts-Road-Objects))
- **marearts-xcolor** - Color extraction and similarity analysis ([GitHub](https://github.com/MareArts/MareArts-Xcolor))
- **marearts-mast** - Real-time panoramic stitching ([GitHub](https://github.com/MareArts/MareArts-MAST))
- **marearts-crystal** - Encryption and decryption toolkit ([PyPI](https://pypi.org/project/marearts-crystal/))
## Support & Resources
| Resource | Link |
|----------|------|
| ๐ง **Contact** | [hello@marearts.com](mailto:hello@marearts.com) |
| ๐ **Homepage** | [https://marearts.com](https://marearts.com) |
| ๐ณ **License Purchase** | [ANPR Solution](https://study.marearts.com/p/anpr-lpr-solution.html) |
| ๐ฎ **Live Demo** | [http://live.marearts.com](http://live.marearts.com) |
| ๐บ **Video Examples** | [YouTube Playlist](https://www.youtube.com/playlist?list=PLvX6vpRszMkxJBJf4EjQ5VCnmkjfE59-J) |
## License
ยฉ 2024 MareArts. All rights reserved.
This software requires a valid license key. Visit [MareArts ANPR Solution](https://study.marearts.com/p/anpr-lpr-solution.html) for licensing options.
Raw data
{
"_id": null,
"home_page": "https://www.marearts.com",
"name": "marearts-anpr",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": "MareArts",
"author_email": "hello@marearts.com",
"download_url": null,
"platform": null,
"description": "# MareArts ANPR SDK\n\n[](https://badge.fury.io/py/marearts-anpr)\n[](https://pypi.org/project/marearts-anpr/)\n[](https://pepy.tech/project/marearts-anpr)\n[](https://study.marearts.com/p/anpr-lpr-solution.html)\n[](http://live.marearts.com)\n\nAutomatic Number Plate Recognition (ANPR) SDK for multiple regions with GPU acceleration support.\n\n## Features\n\n- \ud83c\udf0d **Multi-Region Support**: Korean, Europe+, North America, China, and Universal license plates\n- \ud83d\udd04 **Dynamic Region Switching**: Change regions instantly with `set_region()` without model reload\n- \u26a1 **GPU Acceleration**: CUDA, DirectML support for real-time processing\n- \ud83c\udfaf **High Accuracy**: Advanced models with regional vocabulary optimization\n- \ud83d\udce6 **Batch Processing**: Process multiple plates simultaneously\n- \ud83d\udc33 **Production Ready**: Docker API with smart model caching and multi-architecture support\n\n## Quick Start\n\n### Installation\n\n```bash\n# CPU Installation\npip install marearts-anpr\n\n# GPU Installation (CUDA, DirectML)\npip install marearts-anpr[gpu] # NVIDIA CUDA\npip install marearts-anpr[directml] # Windows GPU (AMD/Intel/NVIDIA)\n```\n\n\ud83d\udce6 [See complete installation guide](docs/installation.md)\n\n### Basic Usage\n\n\ud83d\udca1 **Model names**: See [models and benchmarks](docs/models.md) (e.g., `small_640p_fp32`, `small_fp32`)\n\n```python\nfrom marearts_anpr import ma_anpr_detector_v14, ma_anpr_ocr_v14, marearts_anpr_from_image_file\n\n# Initialize detector\ndetector = ma_anpr_detector_v14(\n \"small_640p_fp32\", # pico_640p_fp32, micro_640p_fp32, small_640p_fp32, medium_640p_fp32, large_640p_fp32\n user_name,\n serial_key,\n signature,\n backend=\"cuda\", # cpu, cuda, directml (auto-selected if \"auto\")\n conf_thres=0.25, # Detection confidence threshold (default: 0.25)\n iou_thres=0.5 # IoU threshold for NMS (default: 0.5)\n)\n\n# Initialize OCR with regional vocabulary\nocr = ma_anpr_ocr_v14(\n \"small_fp32\", # Model: pico_fp32, micro_fp32, small_fp32, medium_fp32, large_fp32\n \"univ\", # Region: kr, eup, na, cn, univ (choose specific region for best accuracy)\n user_name,\n serial_key,\n signature\n)\n\n# Process image\nresult = marearts_anpr_from_image_file(detector, ocr, \"image.jpg\")\nprint(result)\n# Output: {'results': [{'ocr': 'ABC123', 'ocr_conf': 99, ...}], ...}\n```\n\n#### Dynamic Region Switching\n\nSwitch regions without reinitialization:\n\n```python\nocr.set_region('eup') # Europe+\nocr.set_region('kr') # Korean\nocr.set_region('na') # North America\n```\n\n\ud83d\udd04 [Learn more about dynamic region switching](docs/usage.md#dynamic-region-switching-370)\n\n#### Multiple Input Formats & CLI\n\n**From different image sources:**\n```python\nimport cv2\nfrom PIL import Image\nfrom marearts_anpr import marearts_anpr_from_cv2, marearts_anpr_from_pil\n\nresult = marearts_anpr_from_cv2(detector, ocr, cv2.imread(\"image.jpg\"))\nresult = marearts_anpr_from_pil(detector, ocr, Image.open(\"image.jpg\"))\nresult = marearts_anpr_from_image_file(detector, ocr, \"image.jpg\")\n```\n\n**CLI commands:**\n```bash\nma-anpr image.jpg # Process image\nma-anpr test-api image.jpg # Test API (1000/day limit)\nma-anpr validate # Validate license\n```\n\n\ud83d\udd27 [See complete usage examples and CLI reference](docs/usage.md)\n\n## Model Performance\n\n### Detector Performance\n\n| Model Name | F1 Score | Speed CUDA | Speed CPU | Notes |\n|-------|----------|------------|-----------|-------|\n| pico_640p_fp32 | 93.08% | 68.7 FPS (14.5ms) | - | Fastest, smallest model |\n| micro_640p_fp32 | 93.39% | 69.5 FPS (14.4ms) | - | Fast with good accuracy |\n| small_640p_fp32 | 92.58% | 69.5 FPS (14.4ms) | - | Balanced performance |\n| medium_640p_fp32 | 92.27% | 62.1 FPS (16.1ms) | - | Higher accuracy |\n| large_640p_fp32 | 93.77% | 57.4 FPS (17.4ms) | - | \ud83c\udfaf Highest F1 score |\n\n### OCR Performance\n\n*Average across all regions*\n\n| Model Name | Exact Match | Char Accuracy | FPS | Notes |\n|-------|-------------|---------------|-----|-------|\n| pico_fp32 | 91.78% | 96.65% | 270 | Fastest, smallest |\n| micro_fp32 | 91.86% | 96.50% | 262 | Fast with good accuracy |\n| small_fp32 | 91.54% | 96.64% | **300** | \u26a1 Fastest inference |\n| medium_fp32 | 90.36% | 96.45% | 270 | Balanced performance |\n| **large_fp32** | **91.70%** | **96.27%** | 262 | \ud83c\udfaf Best accuracy |\n\n**Supported Regions**: Korean (`kr`), Europe+ (`eup`), North America (`na`), China (`cn`), Universal (`univ`)\n\n\ud83d\udcca [See detailed benchmarks by region](docs/models.md)\n\n## Regional Support\n\nMareArts ANPR supports license plates from multiple regions with specialized vocabulary optimization:\n\n- \ud83c\uddf0\ud83c\uddf7 **Korean (`kr`)** - Korean license plates with Hangul characters (best accuracy: 99.27%)\n- \ud83c\uddea\ud83c\uddfa **Europe+ (`eup`)** - EU countries + Albania, Andorra, Bosnia & Herzegovina, Indonesia, and more\n- \ud83c\uddfa\ud83c\uddf8 **North America (`na`)** - USA and Canada license plates\n- \ud83c\udde8\ud83c\uddf3 **China (`cn`)** - Chinese license plates with province codes\n- \ud83c\udf0d **Universal (`univ`)** - All regions (default, but choose specific region for best accuracy)\n\n\ud83d\udca1 **Dynamic Region Switching**: Use `ocr.set_region('kr')` to switch regions instantly without reloading the model, saving ~180 MB per additional region.\n\n\ud83c\udf0d [See complete regional support and character sets](docs/regional-support.md)\n\n## Documentation\n\n- \ud83d\udce6 [Installation Guide](docs/installation.md) - Detailed installation options and requirements\n- \ud83d\udd27 [Usage Examples](docs/usage.md) - Python SDK, CLI usage, dynamic region switching, and environment variables\n- \ud83d\udcbb [Example Code](example_code/) - Basic, advanced, and batch processing examples\n- \ud83d\ude80 [Model Versions](docs/models.md) - Available models, benchmarks, and performance metrics\n- \ud83c\udf0d [Regional Support](docs/regional-support.md) - Supported countries and character sets\n- \ud83d\udc33 [Docker Deployment](docs/docker.md) - Container setup, API server, and multi-architecture builds\n- \ud83e\uddea [Try ANPR](docs/api-testing.md) - Test our ANPR without license (1000 requests/day)\n- \u2753 [FAQ](docs/faq.md) - Licensing, regions, features, and troubleshooting\n\n## MareArts Ecosystem\n\nExplore our AI toolkit:\n\n- **marearts-anpr** - Automatic Number Plate Recognition ([GitHub](https://github.com/MareArts/MareArts-ANPR))\n- **marearts-road-objects** - Road object detection for persons, vehicles, and 2-wheelers ([GitHub](https://github.com/MareArts/MareArts-Road-Objects))\n- **marearts-xcolor** - Color extraction and similarity analysis ([GitHub](https://github.com/MareArts/MareArts-Xcolor))\n- **marearts-mast** - Real-time panoramic stitching ([GitHub](https://github.com/MareArts/MareArts-MAST))\n- **marearts-crystal** - Encryption and decryption toolkit ([PyPI](https://pypi.org/project/marearts-crystal/))\n\n## Support & Resources\n\n| Resource | Link |\n|----------|------|\n| \ud83d\udce7 **Contact** | [hello@marearts.com](mailto:hello@marearts.com) |\n| \ud83c\udfe0 **Homepage** | [https://marearts.com](https://marearts.com) |\n| \ud83d\udcb3 **License Purchase** | [ANPR Solution](https://study.marearts.com/p/anpr-lpr-solution.html) |\n| \ud83c\udfae **Live Demo** | [http://live.marearts.com](http://live.marearts.com) |\n| \ud83d\udcfa **Video Examples** | [YouTube Playlist](https://www.youtube.com/playlist?list=PLvX6vpRszMkxJBJf4EjQ5VCnmkjfE59-J) |\n\n## License\n\n\u00a9 2024 MareArts. All rights reserved.\n\nThis software requires a valid license key. Visit [MareArts ANPR Solution](https://study.marearts.com/p/anpr-lpr-solution.html) for licensing options.\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "MareArts ANPR (Automatic Number Plate Recognition) library",
"version": "3.6.5",
"project_urls": {
"Homepage": "https://www.marearts.com"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b099c42b425bf0daf3ddcf73505fa49d7bd7d16d45f89f00b579b159664352d6",
"md5": "ac4e6e34f6599190b0b2e03c4cbc9c4a",
"sha256": "39585411748f5dd65301fd0ae74bc5affd58e09908351b1b00b55af73d52c529"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp310-cp310-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "ac4e6e34f6599190b0b2e03c4cbc9c4a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.9",
"size": 1067460,
"upload_time": "2025-11-08T11:18:36",
"upload_time_iso_8601": "2025-11-08T11:18:36.126610Z",
"url": "https://files.pythonhosted.org/packages/b0/99/c42b425bf0daf3ddcf73505fa49d7bd7d16d45f89f00b579b159664352d6/marearts_anpr-3.6.5-cp310-cp310-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7475751e66c53351b62c45dd958718b2f4c50b613ca49900a3edea19490057bd",
"md5": "9e9dfd9b4d89d82f88b03ce2feab8dd3",
"sha256": "5d4db53e6f09386c0badf5163dc6e25b085fcb7df56fa91aa195d33b405e558d"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"has_sig": false,
"md5_digest": "9e9dfd9b4d89d82f88b03ce2feab8dd3",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.9",
"size": 638894,
"upload_time": "2025-11-08T11:14:18",
"upload_time_iso_8601": "2025-11-08T11:14:18.134522Z",
"url": "https://files.pythonhosted.org/packages/74/75/751e66c53351b62c45dd958718b2f4c50b613ca49900a3edea19490057bd/marearts_anpr-3.6.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bd7b77805c38ac2c70c250b81ddcf975eb9caa26a7a9b97a9ec946ed469cbd47",
"md5": "f24a4f57794896dedc5ec0bc4ac91232",
"sha256": "52167ea4ed2cd509d425f72122bf9ac51016044e870c95a015c577ba097d8e75"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f24a4f57794896dedc5ec0bc4ac91232",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.9",
"size": 662618,
"upload_time": "2025-11-08T11:14:20",
"upload_time_iso_8601": "2025-11-08T11:14:20.591019Z",
"url": "https://files.pythonhosted.org/packages/bd/7b/77805c38ac2c70c250b81ddcf975eb9caa26a7a9b97a9ec946ed469cbd47/marearts_anpr-3.6.5-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "119346ccd2b6c14894113d0e62f277e491dd79568aeea11b37ac7a1bb40e667e",
"md5": "9da9190c7ff54c4b6694d8d644a7a35e",
"sha256": "46d2b13ff450a7d8739597f213fe34df600d09acf7cd8f091a4fd7bf205121f3"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "9da9190c7ff54c4b6694d8d644a7a35e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.9",
"size": 460878,
"upload_time": "2025-11-08T11:18:37",
"upload_time_iso_8601": "2025-11-08T11:18:37.579502Z",
"url": "https://files.pythonhosted.org/packages/11/93/46ccd2b6c14894113d0e62f277e491dd79568aeea11b37ac7a1bb40e667e/marearts_anpr-3.6.5-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bad57e87e91bfdf595fcef22affb445df5f72b36874ee6d17ec958f4acd85baf",
"md5": "2367e4eced0f31921d63ed947ea5e4f3",
"sha256": "a154e566935a895735f5cd53e92f7f055b073b76086c6496b782cc7ee42d08de"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp311-cp311-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "2367e4eced0f31921d63ed947ea5e4f3",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.9",
"size": 1053223,
"upload_time": "2025-11-08T11:18:38",
"upload_time_iso_8601": "2025-11-08T11:18:38.971260Z",
"url": "https://files.pythonhosted.org/packages/ba/d5/7e87e91bfdf595fcef22affb445df5f72b36874ee6d17ec958f4acd85baf/marearts_anpr-3.6.5-cp311-cp311-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "468ecdebd45a2512322b1ecf54e88ba49c17fe8c91a773f7d445282b80625061",
"md5": "2137d4c8c09c5438979ffe6f10365b68",
"sha256": "f3ed99248bf491653ebd86aebf66dd1ecaedbde893ada632526620d33c93cfa3"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"has_sig": false,
"md5_digest": "2137d4c8c09c5438979ffe6f10365b68",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.9",
"size": 635897,
"upload_time": "2025-11-08T11:14:22",
"upload_time_iso_8601": "2025-11-08T11:14:22.339942Z",
"url": "https://files.pythonhosted.org/packages/46/8e/cdebd45a2512322b1ecf54e88ba49c17fe8c91a773f7d445282b80625061/marearts_anpr-3.6.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c44ea7b91fba8e7c69935c43fbd432dc4e42a8b5a5b199bef8c82163b973e6f8",
"md5": "bc5b8aeefd449624f6563d9aecb0c5b4",
"sha256": "c8bb6a9c983bfde1e2db5324d0a9e6f322ef906c6e153ca07198b2991d382cd5"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp311-cp311-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "bc5b8aeefd449624f6563d9aecb0c5b4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.9",
"size": 660350,
"upload_time": "2025-11-08T11:14:24",
"upload_time_iso_8601": "2025-11-08T11:14:24.136870Z",
"url": "https://files.pythonhosted.org/packages/c4/4e/a7b91fba8e7c69935c43fbd432dc4e42a8b5a5b199bef8c82163b973e6f8/marearts_anpr-3.6.5-cp311-cp311-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8eb29878a45de5cb50d6f18c0febc4f7c6cf65c4db236f80e7785d084c515896",
"md5": "f345a13cb64410739bd452f068f8ffca",
"sha256": "f45f5c5c59108110073155fe7a2bc88ee1e96cc4ff14bf7e44c442a885decc38"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "f345a13cb64410739bd452f068f8ffca",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.9",
"size": 461841,
"upload_time": "2025-11-08T11:18:40",
"upload_time_iso_8601": "2025-11-08T11:18:40.126364Z",
"url": "https://files.pythonhosted.org/packages/8e/b2/9878a45de5cb50d6f18c0febc4f7c6cf65c4db236f80e7785d084c515896/marearts_anpr-3.6.5-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "30acc02f9343e86ddec4a42a5b1f8493e811f75c6c4c21722149bbd0125e4b6a",
"md5": "6f4e1feb2226b544173951ff9cc4004b",
"sha256": "f7d2679b3f27b6a82069aa2b0fb3953209611ad0b15f7ece3d93324247fd3e06"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp312-cp312-macosx_10_13_universal2.whl",
"has_sig": false,
"md5_digest": "6f4e1feb2226b544173951ff9cc4004b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.9",
"size": 1056421,
"upload_time": "2025-11-08T11:18:41",
"upload_time_iso_8601": "2025-11-08T11:18:41.660918Z",
"url": "https://files.pythonhosted.org/packages/30/ac/c02f9343e86ddec4a42a5b1f8493e811f75c6c4c21722149bbd0125e4b6a/marearts_anpr-3.6.5-cp312-cp312-macosx_10_13_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e4ea21a19d36637d9a82fa78a6b2911d90bbae3ef59ad0e89fa2aaae4e433349",
"md5": "32f3e62d683689490f238468dd940f27",
"sha256": "91b821744b9151d6c4c7583f5fa73e46fa326e5ec5ddd9c7cfdfe6bed7f508b0"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"has_sig": false,
"md5_digest": "32f3e62d683689490f238468dd940f27",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.9",
"size": 631072,
"upload_time": "2025-11-08T11:14:25",
"upload_time_iso_8601": "2025-11-08T11:14:25.830755Z",
"url": "https://files.pythonhosted.org/packages/e4/ea/21a19d36637d9a82fa78a6b2911d90bbae3ef59ad0e89fa2aaae4e433349/marearts_anpr-3.6.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "553203494adc2da5a8c98f1d68da459969e9117f812c24b9117d2d6d47724529",
"md5": "021e549545f0c313143fda0781ba68f5",
"sha256": "8c5d2528f0952f7a4940dfcf20b28e0d214259f17a84270e6ed03a6ec96f9662"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp312-cp312-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "021e549545f0c313143fda0781ba68f5",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.9",
"size": 654009,
"upload_time": "2025-11-08T11:14:27",
"upload_time_iso_8601": "2025-11-08T11:14:27.257535Z",
"url": "https://files.pythonhosted.org/packages/55/32/03494adc2da5a8c98f1d68da459969e9117f812c24b9117d2d6d47724529/marearts_anpr-3.6.5-cp312-cp312-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c9213fecc0b700092cf71cc7b4fb0f7ea7a719c24076fd5cb546d3d951a6f4d8",
"md5": "04972e1be10f4bf9dbbafbd3798c3f7e",
"sha256": "6715e779bf9e46824a3a615e4ae512021e9bb10b3ba3bbf57600caef4783f7e5"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "04972e1be10f4bf9dbbafbd3798c3f7e",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.9",
"size": 456385,
"upload_time": "2025-11-08T11:18:42",
"upload_time_iso_8601": "2025-11-08T11:18:42.700321Z",
"url": "https://files.pythonhosted.org/packages/c9/21/3fecc0b700092cf71cc7b4fb0f7ea7a719c24076fd5cb546d3d951a6f4d8/marearts_anpr-3.6.5-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0970fa70f8b60009ca4ab06319e1f2b48f28a22db0b5b039faca4656eb4cd563",
"md5": "18e93a00f5b69063d28529705ff6c12d",
"sha256": "b08e1e91269f7837b4ae894a5e4a3ebf1829e187c7b72cebfff115e5c0414712"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp39-cp39-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "18e93a00f5b69063d28529705ff6c12d",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<3.13,>=3.9",
"size": 1075499,
"upload_time": "2025-11-08T11:18:44",
"upload_time_iso_8601": "2025-11-08T11:18:44.214983Z",
"url": "https://files.pythonhosted.org/packages/09/70/fa70f8b60009ca4ab06319e1f2b48f28a22db0b5b039faca4656eb4cd563/marearts_anpr-3.6.5-cp39-cp39-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ad713807e601c89f39f476eb215b85b015c46953e7a602b5222ea9c9be0e65cc",
"md5": "c1bfb91c74220012663350e41fce9ca0",
"sha256": "aed6596695b50ef16c546f22dcccd34b640a26ee702ab29e735ef9ed8b382620"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"has_sig": false,
"md5_digest": "c1bfb91c74220012663350e41fce9ca0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<3.13,>=3.9",
"size": 642501,
"upload_time": "2025-11-08T11:14:28",
"upload_time_iso_8601": "2025-11-08T11:14:28.945112Z",
"url": "https://files.pythonhosted.org/packages/ad/71/3807e601c89f39f476eb215b85b015c46953e7a602b5222ea9c9be0e65cc/marearts_anpr-3.6.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "047535bf403649bc18eed4f54b50e9f784a46d46b22d2cb88928f8f83b7cb412",
"md5": "171e63990d1b38f77a4e6fde986dae70",
"sha256": "2f7364f436b1f35a372915f24c7ac9513d474f0b8949e6b40afaed152544bc4b"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "171e63990d1b38f77a4e6fde986dae70",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<3.13,>=3.9",
"size": 666642,
"upload_time": "2025-11-08T11:14:30",
"upload_time_iso_8601": "2025-11-08T11:14:30.717158Z",
"url": "https://files.pythonhosted.org/packages/04/75/35bf403649bc18eed4f54b50e9f784a46d46b22d2cb88928f8f83b7cb412/marearts_anpr-3.6.5-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "651790f1cbb4188ba22c5c7ae35c803bc249a6e37bf385666734fc830fb38414",
"md5": "b6e98717ab5949db8cbf64303881c8c4",
"sha256": "3d631ad9bfac73e9473c47e7f840bad5ae2897fe04d2669415ad5a2e6f9634b5"
},
"downloads": -1,
"filename": "marearts_anpr-3.6.5-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "b6e98717ab5949db8cbf64303881c8c4",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<3.13,>=3.9",
"size": 463296,
"upload_time": "2025-11-08T11:18:45",
"upload_time_iso_8601": "2025-11-08T11:18:45.374090Z",
"url": "https://files.pythonhosted.org/packages/65/17/90f1cbb4188ba22c5c7ae35c803bc249a6e37bf385666734fc830fb38414/marearts_anpr-3.6.5-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-11-08 11:18:36",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "marearts-anpr"
}