marearts-road-objects


Namemarearts-road-objects JSON
Version 1.0.5 PyPI version JSON
download
home_pageNone
SummaryHigh-performance road object detection for persons, vehicles, and 2-wheelers
upload_time2025-07-20 12:56:56
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseProprietary
keywords computer-vision object-detection road-safety onnx yolo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🚗 MareArts Road Objects Detection

[![PyPI version](https://badge.fury.io/py/marearts-road-objects.svg)](https://badge.fury.io/py/marearts-road-objects)
[![Downloads](https://pepy.tech/badge/marearts-road-objects)](https://pepy.tech/project/marearts-road-objects)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/license-Proprietary-red.svg)](LICENSE)
[![Windows](https://img.shields.io/badge/os-Windows-blue.svg)](https://www.microsoft.com/windows)
[![Linux](https://img.shields.io/badge/os-Linux-green.svg)](https://www.linux.org/)
[![macOS](https://img.shields.io/badge/os-macOS-silver.svg)](https://www.apple.com/macos/)

A high-performance Python package for road object detection. Detect persons, 4-wheeled vehicles, and 2-wheeled vehicles in images with advanced YOLO-based neural networks.

## ✨ Features

- 🚗 **Multi-class Detection**: Detects persons, cars/trucks, and motorcycles/bicycles
- ⚡ **GPU Acceleration**: NVIDIA CUDA, TensorRT, and DirectML support
- 🛠️ **CLI Interface**: Easy command-line tools (`marearts-robj` or `marearts-road-objects`)
- 📦 **Multiple Model Sizes**: Small (50MB), medium (100MB), large (200MB)
- 🌐 **Cross-platform**: Windows, macOS, and Linux support
- 🔑 **Unified License**: Same license works for both [MareArts-ANPR](https://github.com/MareArts/MareArts-ANPR) and Road Objects

## 🚀 Quick Start

### Installation

```bash
# Basic installation (CPU)
pip install marearts-road-objects

# With GPU acceleration (recommended)
pip install marearts-road-objects[gpu]          # NVIDIA
pip install marearts-road-objects[directml]     # Windows GPU
pip install marearts-road-objects[all-gpu]      # All GPU support
```

### Get Your License

**Subscribe**: [MareArts ANPR/LPR Solution](https://study.marearts.com/p/anpr-lpr-solution.html)  
**Note**: One license works for both ANPR and Road Objects packages!

### Configure License

```bash
# Interactive setup (recommended)
marearts-robj config

# Or set environment variables
export MAREARTS_ANPR_USERNAME="your-email@domain.com"
export MAREARTS_ANPR_SERIAL_KEY="your-serial-key"
```

### Basic Usage

```bash
# Detect objects in an image
marearts-robj detect traffic.jpg

# Use larger model with custom settings
marearts-robj detect highway.jpg --model large --confidence 0.7 --output result.jpg

# Check GPU acceleration
marearts-robj gpu-info
```

## 🐍 Python API

### Simple Detection

```python
import cv2
from marearts_road_objects import create_detector, download_model

# License credentials
username = "your-email@domain.com"
serial_key = "your-serial-key"

# Download and initialize detector
model_path = download_model("medium", username, serial_key)
detector = create_detector(model_path, username, serial_key, model_size="medium")

# Detect objects
image = cv2.imread("traffic_scene.jpg")
result = detector.detect(image)

# Print results
print(f"Processing time: {result['processing_time_ms']}ms")
print(f"Total objects: {result['total_objects']}")

for detection in result['detections']:
    print(f"{detection['id']}. {detection['class']} ({detection['subclass']})")
    print(f"   Confidence: {detection['confidence']}")
    print(f"   Bounding box: {detection['bbox']}")
```

### Combined with ANPR

```python
# Same license works for both packages!
from marearts_road_objects import create_detector, download_model
from marearts_anpr import ma_anpr_detector, ma_anpr_ocr, marearts_anpr_from_cv2

username = "your-email@domain.com"
serial_key = "your-serial-key"  # Same key for both!

# Initialize road objects detector
road_model = download_model("medium", username, serial_key)
road_detector = create_detector(road_model, username, serial_key, "medium")

# Initialize ANPR detector and OCR
anpr_detector = ma_anpr_detector("v11_middle", username, serial_key)
anpr_ocr = ma_anpr_ocr("v11_euplus", username, serial_key)

# Analyze traffic scene
image = cv2.imread("traffic.jpg")
vehicles = road_detector.detect(image)                    # Detect vehicles/persons
plates = marearts_anpr_from_cv2(anpr_detector, anpr_ocr, image)  # Detect and OCR license plates

print(f"Found {vehicles['total_objects']} road objects, {len(plates)} license plates")
```

## 📊 Output Format

The detection results come in a clean, structured JSON format:

```python
{
  "processing_time_ms": 45.2,        # Processing time in milliseconds
  "total_objects": 3,                # Number of detected objects
  "detections": [                    # List of detected objects
    {
      "id": 1,                       # Sequential object ID
      "class": "person",             # Main class (person, 4-wheels, 2-wheels)
      "subclass": "pedestrian",      # Specific subclass (pedestrian, car, truck, bike)
      "confidence": 0.89,            # Detection confidence (0.0 - 1.0)
      "bbox": [120, 150, 180, 280]   # Bounding box [x1, y1, x2, y2]
    },
    {
      "id": 2,
      "class": "4-wheels", 
      "subclass": "car",
      "confidence": 0.76,
      "bbox": [300, 200, 450, 320]
    }
  ]
}
```

## 🎯 Model Information

| Model | Speed | Accuracy | Size | Use Case |
|-------|-------|----------|------|----------|
| Small | Fastest | Good | 50MB | Real-time, mobile |
| Medium | Balanced | Better | 100MB | General purpose |
| Large | Slower | Best | 200MB | High accuracy needs |

**Detection Classes & Subclasses:**
- **person** (Pedestrians and people) → **pedestrian**
- **4-wheels** (Cars, trucks, buses, vans) → **car** (small) or **truck** (large)
- **2-wheels** (Motorcycles, bicycles, scooters) → **bike**

## 🛠️ CLI Reference

### Available Commands

```bash
marearts-robj config         # Configure license
marearts-robj gpu-info       # Check GPU support
marearts-robj detect IMAGE   # Detect objects
marearts-robj download       # Download models
marearts-robj validate       # Validate license
```

### Detection Examples

```bash
# Basic detection
marearts-robj detect image.jpg

# Advanced options
marearts-robj detect highway.jpg \
  --model large \
  --confidence 0.8 \
  --output detected_highway.jpg

# Batch processing
for img in *.jpg; do
  marearts-robj detect "$img" --output "detected_$img"
done
```

### Model Management

```bash
# Download specific models
marearts-robj download --model small
marearts-robj download --model large

# Check what's available
python -c "from marearts_road_objects import get_available_models; print(get_available_models())"
```

## ⚡ GPU Acceleration

### Check GPU Support

```bash
marearts-robj gpu-info
```

**Expected output with GPU:**
```
🚀 CUDAExecutionProvider (GPU)
⚡ CPUExecutionProvider
GPU Acceleration: ENABLED
```

### Performance Comparison

| Configuration | Small Model | Medium Model | Large Model |
|---------------|-------------|--------------|-------------|
| CPU (Intel i7) | ~100ms | ~200ms | ~400ms |
| NVIDIA RTX 3080 | ~15ms | ~25ms | ~45ms |
| DirectML (Windows) | ~30ms | ~60ms | ~120ms |

### GPU Requirements

**NVIDIA**: CUDA 11.8+ and cuDNN 8.6+  
**Windows DirectML**: Windows 10 v1903+ with compatible GPU  
**Memory**: 4GB+ GPU memory recommended for large models

## 💡 Code Examples

Ready-to-run examples are available in the [`examples/`](examples/) directory:

- **`basic_detection.py`** - Simple image detection
- **`combined_anpr_robj.py`** - Use both ANPR and Road Objects
- **`webcam_detection.py`** - Real-time webcam processing
- **`batch_processing.py`** - Process multiple images
- **`cli_examples.sh`** - Complete CLI usage guide

```bash
# Run an example
python examples/basic_detection.py
```

## 🆘 Support

- **License**: [Get your subscription](https://study.marearts.com/p/anpr-lpr-solution.html)
- **Issues**: [GitHub Issues](https://github.com/MareArts/MareArts-Road-Objects/issues)
- **Email**: hello@marearts.com

## 🔗 Related Packages

**MareArts AI Ecosystem** (same license for all):
- **[marearts-anpr](https://pypi.org/project/marearts-anpr/)** - License plate recognition
- **[marearts-crystal](https://pypi.org/project/marearts-crystal/)** - Licensing framework  
- **[marearts-xcolor](https://pypi.org/project/marearts-xcolor/)** - Color space conversions

---

**© 2024 MareArts. All rights reserved.**

*Get started with road object detection in minutes. One license, multiple AI packages, endless possibilities.*

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "marearts-road-objects",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "computer-vision, object-detection, road-safety, onnx, yolo",
    "author": null,
    "author_email": "MareArts <contact@marearts.com>",
    "download_url": null,
    "platform": null,
    "description": "# \ud83d\ude97 MareArts Road Objects Detection\n\n[![PyPI version](https://badge.fury.io/py/marearts-road-objects.svg)](https://badge.fury.io/py/marearts-road-objects)\n[![Downloads](https://pepy.tech/badge/marearts-road-objects)](https://pepy.tech/project/marearts-road-objects)\n[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)\n[![License](https://img.shields.io/badge/license-Proprietary-red.svg)](LICENSE)\n[![Windows](https://img.shields.io/badge/os-Windows-blue.svg)](https://www.microsoft.com/windows)\n[![Linux](https://img.shields.io/badge/os-Linux-green.svg)](https://www.linux.org/)\n[![macOS](https://img.shields.io/badge/os-macOS-silver.svg)](https://www.apple.com/macos/)\n\nA high-performance Python package for road object detection. Detect persons, 4-wheeled vehicles, and 2-wheeled vehicles in images with advanced YOLO-based neural networks.\n\n## \u2728 Features\n\n- \ud83d\ude97 **Multi-class Detection**: Detects persons, cars/trucks, and motorcycles/bicycles\n- \u26a1 **GPU Acceleration**: NVIDIA CUDA, TensorRT, and DirectML support\n- \ud83d\udee0\ufe0f **CLI Interface**: Easy command-line tools (`marearts-robj` or `marearts-road-objects`)\n- \ud83d\udce6 **Multiple Model Sizes**: Small (50MB), medium (100MB), large (200MB)\n- \ud83c\udf10 **Cross-platform**: Windows, macOS, and Linux support\n- \ud83d\udd11 **Unified License**: Same license works for both [MareArts-ANPR](https://github.com/MareArts/MareArts-ANPR) and Road Objects\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n```bash\n# Basic installation (CPU)\npip install marearts-road-objects\n\n# With GPU acceleration (recommended)\npip install marearts-road-objects[gpu]          # NVIDIA\npip install marearts-road-objects[directml]     # Windows GPU\npip install marearts-road-objects[all-gpu]      # All GPU support\n```\n\n### Get Your License\n\n**Subscribe**: [MareArts ANPR/LPR Solution](https://study.marearts.com/p/anpr-lpr-solution.html)  \n**Note**: One license works for both ANPR and Road Objects packages!\n\n### Configure License\n\n```bash\n# Interactive setup (recommended)\nmarearts-robj config\n\n# Or set environment variables\nexport MAREARTS_ANPR_USERNAME=\"your-email@domain.com\"\nexport MAREARTS_ANPR_SERIAL_KEY=\"your-serial-key\"\n```\n\n### Basic Usage\n\n```bash\n# Detect objects in an image\nmarearts-robj detect traffic.jpg\n\n# Use larger model with custom settings\nmarearts-robj detect highway.jpg --model large --confidence 0.7 --output result.jpg\n\n# Check GPU acceleration\nmarearts-robj gpu-info\n```\n\n## \ud83d\udc0d Python API\n\n### Simple Detection\n\n```python\nimport cv2\nfrom marearts_road_objects import create_detector, download_model\n\n# License credentials\nusername = \"your-email@domain.com\"\nserial_key = \"your-serial-key\"\n\n# Download and initialize detector\nmodel_path = download_model(\"medium\", username, serial_key)\ndetector = create_detector(model_path, username, serial_key, model_size=\"medium\")\n\n# Detect objects\nimage = cv2.imread(\"traffic_scene.jpg\")\nresult = detector.detect(image)\n\n# Print results\nprint(f\"Processing time: {result['processing_time_ms']}ms\")\nprint(f\"Total objects: {result['total_objects']}\")\n\nfor detection in result['detections']:\n    print(f\"{detection['id']}. {detection['class']} ({detection['subclass']})\")\n    print(f\"   Confidence: {detection['confidence']}\")\n    print(f\"   Bounding box: {detection['bbox']}\")\n```\n\n### Combined with ANPR\n\n```python\n# Same license works for both packages!\nfrom marearts_road_objects import create_detector, download_model\nfrom marearts_anpr import ma_anpr_detector, ma_anpr_ocr, marearts_anpr_from_cv2\n\nusername = \"your-email@domain.com\"\nserial_key = \"your-serial-key\"  # Same key for both!\n\n# Initialize road objects detector\nroad_model = download_model(\"medium\", username, serial_key)\nroad_detector = create_detector(road_model, username, serial_key, \"medium\")\n\n# Initialize ANPR detector and OCR\nanpr_detector = ma_anpr_detector(\"v11_middle\", username, serial_key)\nanpr_ocr = ma_anpr_ocr(\"v11_euplus\", username, serial_key)\n\n# Analyze traffic scene\nimage = cv2.imread(\"traffic.jpg\")\nvehicles = road_detector.detect(image)                    # Detect vehicles/persons\nplates = marearts_anpr_from_cv2(anpr_detector, anpr_ocr, image)  # Detect and OCR license plates\n\nprint(f\"Found {vehicles['total_objects']} road objects, {len(plates)} license plates\")\n```\n\n## \ud83d\udcca Output Format\n\nThe detection results come in a clean, structured JSON format:\n\n```python\n{\n  \"processing_time_ms\": 45.2,        # Processing time in milliseconds\n  \"total_objects\": 3,                # Number of detected objects\n  \"detections\": [                    # List of detected objects\n    {\n      \"id\": 1,                       # Sequential object ID\n      \"class\": \"person\",             # Main class (person, 4-wheels, 2-wheels)\n      \"subclass\": \"pedestrian\",      # Specific subclass (pedestrian, car, truck, bike)\n      \"confidence\": 0.89,            # Detection confidence (0.0 - 1.0)\n      \"bbox\": [120, 150, 180, 280]   # Bounding box [x1, y1, x2, y2]\n    },\n    {\n      \"id\": 2,\n      \"class\": \"4-wheels\", \n      \"subclass\": \"car\",\n      \"confidence\": 0.76,\n      \"bbox\": [300, 200, 450, 320]\n    }\n  ]\n}\n```\n\n## \ud83c\udfaf Model Information\n\n| Model | Speed | Accuracy | Size | Use Case |\n|-------|-------|----------|------|----------|\n| Small | Fastest | Good | 50MB | Real-time, mobile |\n| Medium | Balanced | Better | 100MB | General purpose |\n| Large | Slower | Best | 200MB | High accuracy needs |\n\n**Detection Classes & Subclasses:**\n- **person** (Pedestrians and people) \u2192 **pedestrian**\n- **4-wheels** (Cars, trucks, buses, vans) \u2192 **car** (small) or **truck** (large)\n- **2-wheels** (Motorcycles, bicycles, scooters) \u2192 **bike**\n\n## \ud83d\udee0\ufe0f CLI Reference\n\n### Available Commands\n\n```bash\nmarearts-robj config         # Configure license\nmarearts-robj gpu-info       # Check GPU support\nmarearts-robj detect IMAGE   # Detect objects\nmarearts-robj download       # Download models\nmarearts-robj validate       # Validate license\n```\n\n### Detection Examples\n\n```bash\n# Basic detection\nmarearts-robj detect image.jpg\n\n# Advanced options\nmarearts-robj detect highway.jpg \\\n  --model large \\\n  --confidence 0.8 \\\n  --output detected_highway.jpg\n\n# Batch processing\nfor img in *.jpg; do\n  marearts-robj detect \"$img\" --output \"detected_$img\"\ndone\n```\n\n### Model Management\n\n```bash\n# Download specific models\nmarearts-robj download --model small\nmarearts-robj download --model large\n\n# Check what's available\npython -c \"from marearts_road_objects import get_available_models; print(get_available_models())\"\n```\n\n## \u26a1 GPU Acceleration\n\n### Check GPU Support\n\n```bash\nmarearts-robj gpu-info\n```\n\n**Expected output with GPU:**\n```\n\ud83d\ude80 CUDAExecutionProvider (GPU)\n\u26a1 CPUExecutionProvider\nGPU Acceleration: ENABLED\n```\n\n### Performance Comparison\n\n| Configuration | Small Model | Medium Model | Large Model |\n|---------------|-------------|--------------|-------------|\n| CPU (Intel i7) | ~100ms | ~200ms | ~400ms |\n| NVIDIA RTX 3080 | ~15ms | ~25ms | ~45ms |\n| DirectML (Windows) | ~30ms | ~60ms | ~120ms |\n\n### GPU Requirements\n\n**NVIDIA**: CUDA 11.8+ and cuDNN 8.6+  \n**Windows DirectML**: Windows 10 v1903+ with compatible GPU  \n**Memory**: 4GB+ GPU memory recommended for large models\n\n## \ud83d\udca1 Code Examples\n\nReady-to-run examples are available in the [`examples/`](examples/) directory:\n\n- **`basic_detection.py`** - Simple image detection\n- **`combined_anpr_robj.py`** - Use both ANPR and Road Objects\n- **`webcam_detection.py`** - Real-time webcam processing\n- **`batch_processing.py`** - Process multiple images\n- **`cli_examples.sh`** - Complete CLI usage guide\n\n```bash\n# Run an example\npython examples/basic_detection.py\n```\n\n## \ud83c\udd98 Support\n\n- **License**: [Get your subscription](https://study.marearts.com/p/anpr-lpr-solution.html)\n- **Issues**: [GitHub Issues](https://github.com/MareArts/MareArts-Road-Objects/issues)\n- **Email**: hello@marearts.com\n\n## \ud83d\udd17 Related Packages\n\n**MareArts AI Ecosystem** (same license for all):\n- **[marearts-anpr](https://pypi.org/project/marearts-anpr/)** - License plate recognition\n- **[marearts-crystal](https://pypi.org/project/marearts-crystal/)** - Licensing framework  \n- **[marearts-xcolor](https://pypi.org/project/marearts-xcolor/)** - Color space conversions\n\n---\n\n**\u00a9 2024 MareArts. All rights reserved.**\n\n*Get started with road object detection in minutes. One license, multiple AI packages, endless possibilities.*\n",
    "bugtrack_url": null,
    "license": "Proprietary",
    "summary": "High-performance road object detection for persons, vehicles, and 2-wheelers",
    "version": "1.0.5",
    "project_urls": {
        "Documentation": "https://github.com/MareArts/MareArts-Road-Objects#readme",
        "Homepage": "https://github.com/MareArts/MareArts-Road-Objects",
        "Repository": "https://github.com/MareArts/MareArts-Road-Objects"
    },
    "split_keywords": [
        "computer-vision",
        " object-detection",
        " road-safety",
        " onnx",
        " yolo"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "836ac773c5321c481e3000b1730ac649615a02b7beae4e839309f397b70f9cbf",
                "md5": "a4e459fd051b24687f5efcd6d1222d73",
                "sha256": "468b6ba28f861fb9b7bc8c6a8092d6a3bf696d459dfecae27ebcb9ef4006e031"
            },
            "downloads": -1,
            "filename": "marearts_road_objects-1.0.5-cp310-cp310-macosx_10_9_universal2.whl",
            "has_sig": false,
            "md5_digest": "a4e459fd051b24687f5efcd6d1222d73",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 363610,
            "upload_time": "2025-07-20T12:56:56",
            "upload_time_iso_8601": "2025-07-20T12:56:56.672265Z",
            "url": "https://files.pythonhosted.org/packages/83/6a/c773c5321c481e3000b1730ac649615a02b7beae4e839309f397b70f9cbf/marearts_road_objects-1.0.5-cp310-cp310-macosx_10_9_universal2.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "94b2cfe1530ea82c062fae127d6fa3d9e62e508a1ed0a67d908d2a92180085e4",
                "md5": "a7f7c7edaf9e95679f9103809ffcda71",
                "sha256": "0e7982da28297e52950423630dc4e1cffbcbb39b57910db29ab99290b1eaa6c8"
            },
            "downloads": -1,
            "filename": "marearts_road_objects-1.0.5-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "a7f7c7edaf9e95679f9103809ffcda71",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 173894,
            "upload_time": "2025-07-20T12:56:57",
            "upload_time_iso_8601": "2025-07-20T12:56:57.939398Z",
            "url": "https://files.pythonhosted.org/packages/94/b2/cfe1530ea82c062fae127d6fa3d9e62e508a1ed0a67d908d2a92180085e4/marearts_road_objects-1.0.5-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f36e35c467173b92a4b56862fba4211054eaea065b3036f1e0255955ddfd7328",
                "md5": "c98b89329f1d721f290d69e8ededfd2f",
                "sha256": "6ae83832420edfd7cd0de4028451ff90c73e4e3150a32c0e5bd323204bfbf577"
            },
            "downloads": -1,
            "filename": "marearts_road_objects-1.0.5-cp311-cp311-macosx_10_9_universal2.whl",
            "has_sig": false,
            "md5_digest": "c98b89329f1d721f290d69e8ededfd2f",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 366294,
            "upload_time": "2025-07-20T12:56:59",
            "upload_time_iso_8601": "2025-07-20T12:56:59.243261Z",
            "url": "https://files.pythonhosted.org/packages/f3/6e/35c467173b92a4b56862fba4211054eaea065b3036f1e0255955ddfd7328/marearts_road_objects-1.0.5-cp311-cp311-macosx_10_9_universal2.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2795fae9094c3a03ec2da71469f0bee9c4a26b4cf43e181fc29b77899b64932d",
                "md5": "afae6254dfe6d72b6cc5a5cfe2f44d54",
                "sha256": "d39d8f3a4e150f544ee32c6b5e62fed4eed778f8c9e11e205bcf70c8e70a78bb"
            },
            "downloads": -1,
            "filename": "marearts_road_objects-1.0.5-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "afae6254dfe6d72b6cc5a5cfe2f44d54",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 174662,
            "upload_time": "2025-07-20T12:57:00",
            "upload_time_iso_8601": "2025-07-20T12:57:00.691242Z",
            "url": "https://files.pythonhosted.org/packages/27/95/fae9094c3a03ec2da71469f0bee9c4a26b4cf43e181fc29b77899b64932d/marearts_road_objects-1.0.5-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0f870ff2810a983336a0d46b978e421e143a5c4b445c4bebe291757715336237",
                "md5": "af94a847f0e92a48b6b466c644615286",
                "sha256": "f30d3fd4a5943f3bb6e517c8546a9a1f4199a792c00235b440a5870c9310b796"
            },
            "downloads": -1,
            "filename": "marearts_road_objects-1.0.5-cp312-cp312-macosx_10_13_universal2.whl",
            "has_sig": false,
            "md5_digest": "af94a847f0e92a48b6b466c644615286",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 365245,
            "upload_time": "2025-07-20T12:57:02",
            "upload_time_iso_8601": "2025-07-20T12:57:02.222439Z",
            "url": "https://files.pythonhosted.org/packages/0f/87/0ff2810a983336a0d46b978e421e143a5c4b445c4bebe291757715336237/marearts_road_objects-1.0.5-cp312-cp312-macosx_10_13_universal2.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c4922072cfaef4075d1dfa6be3555b31b9b4e12c8a3f7f195a5f51e24939f74b",
                "md5": "8853f1d0d32456a85beaeea80a12aee8",
                "sha256": "0d209bfe0e967dac556be040d24d5de955c2164027abe84e6f09e85ce59cbedc"
            },
            "downloads": -1,
            "filename": "marearts_road_objects-1.0.5-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "8853f1d0d32456a85beaeea80a12aee8",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 173793,
            "upload_time": "2025-07-20T12:57:03",
            "upload_time_iso_8601": "2025-07-20T12:57:03.321235Z",
            "url": "https://files.pythonhosted.org/packages/c4/92/2072cfaef4075d1dfa6be3555b31b9b4e12c8a3f7f195a5f51e24939f74b/marearts_road_objects-1.0.5-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-20 12:56:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MareArts",
    "github_project": "MareArts-Road-Objects#readme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "marearts-road-objects"
}
        
Elapsed time: 1.82971s