[![](https://api.codacy.com/project/badge/Grade/1d42c486297a49158494e5f31b25793b)](https://app.codacy.com/manual/pymargot/margot?utm_source=github.com&utm_medium=referral&utm_content=pymargot/margot&utm_campaign=Badge_Grade_Dashboard)
[![](https://travis-ci.org/pymargot/margot.svg?branch=master)](https://travis-ci.org/github/pymargot/margot)
[![](https://readthedocs.org/projects/margot/badge/?version=latest)](https://margot.readthedocs.io/en/latest/?badge=latest)
[![](https://codecov.io/gh/pymargot/margot/branch/master/graph/badge.svg)](https://codecov.io/gh/pymargot/margot)
[![](https://img.shields.io/github/license/pymargot/margot)](https://github.com/pymargot/margot/blob/master/LICENSE)
![](https://img.shields.io/pypi/wheel/margot)
![](https://img.shields.io/pypi/pyversions/margot)
[![](https://img.shields.io/pypi/v/margot)](https://pypi.org/project/margot/)
# What is margot?
Margot makes it super easy to backtest trading elgorithms. Firstly, Margot makes
it super easy tocreate neat and tidy Pandas dataframes for time-series analysis.
Margot manages data collection, caching, cleaning, feature generation,
management and persistence using a clean, declarative API. If you've
ever used Django you will find this approach similar to the Django ORM.
Margot also provides a simple framework for writing and backtesting systematic
trading algorithms.
Results from margot's trading algorithms can be analysed using pyfolio.
# Getting Started
pip install margot
Next you need to make sure you have a couple of important environment variables
set::
export ALPHAVANTAGE_API_KEY=YOUR_API_KEY
export DATA_CACHE=PATH_TO_FOLDER_TO_STORE_HDF5_FILES
Once you've done that, try running the code in the [notebook](notebook.margot.data).
# Status
This is still an early stage software project, and should not be used for live
trading just yet.
# Documentation
The documentation is at [readthedocs](https://margot.readthedocs.io/en/latest/).
# Contributing
Feel free to make a pull request or chat about your idea first using [issues](https://github.com/atkinson/margot/issues).
Dependencies are kept to a minimum. Generally if there's a way to do something
in the standard library (or numpy / Pandas), let's do it that way rather than
add another library.
# License
Margot is licensed for use under Apache 2.0. For details see [the License](https://github.com/atkinson/margot/blob/master/LICENSE).
Raw data
{
"_id": null,
"home_page": "https://github.com/pymargot/margot",
"name": "margot",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "quant,trading,systematic",
"author": "Rich Atkinson",
"author_email": "rich@airteam.com.au",
"download_url": "https://files.pythonhosted.org/packages/ea/16/d1db37c2b0d80eb1bd36f82dfd32abf1ba404f22d4554ef2d3f5fc8ea267/margot-1.13.tar.gz",
"platform": null,
"description": "[![](https://api.codacy.com/project/badge/Grade/1d42c486297a49158494e5f31b25793b)](https://app.codacy.com/manual/pymargot/margot?utm_source=github.com&utm_medium=referral&utm_content=pymargot/margot&utm_campaign=Badge_Grade_Dashboard)\n[![](https://travis-ci.org/pymargot/margot.svg?branch=master)](https://travis-ci.org/github/pymargot/margot)\n[![](https://readthedocs.org/projects/margot/badge/?version=latest)](https://margot.readthedocs.io/en/latest/?badge=latest)\n[![](https://codecov.io/gh/pymargot/margot/branch/master/graph/badge.svg)](https://codecov.io/gh/pymargot/margot)\n[![](https://img.shields.io/github/license/pymargot/margot)](https://github.com/pymargot/margot/blob/master/LICENSE)\n![](https://img.shields.io/pypi/wheel/margot)\n![](https://img.shields.io/pypi/pyversions/margot)\n[![](https://img.shields.io/pypi/v/margot)](https://pypi.org/project/margot/)\n\n\n# What is margot?\nMargot makes it super easy to backtest trading elgorithms. Firstly, Margot makes\nit super easy tocreate neat and tidy Pandas dataframes for time-series analysis.\n\nMargot manages data collection, caching, cleaning, feature generation,\nmanagement and persistence using a clean, declarative API. If you've\never used Django you will find this approach similar to the Django ORM.\n\nMargot also provides a simple framework for writing and backtesting systematic\ntrading algorithms.\n\nResults from margot's trading algorithms can be analysed using pyfolio.\n\n# Getting Started\n\n pip install margot\n\nNext you need to make sure you have a couple of important environment variables\nset::\n\n export ALPHAVANTAGE_API_KEY=YOUR_API_KEY\n export DATA_CACHE=PATH_TO_FOLDER_TO_STORE_HDF5_FILES\n\nOnce you've done that, try running the code in the [notebook](notebook.margot.data).\n\n# Status\nThis is still an early stage software project, and should not be used for live\ntrading just yet.\n\n# Documentation\n\nThe documentation is at [readthedocs](https://margot.readthedocs.io/en/latest/).\n\n# Contributing\n\nFeel free to make a pull request or chat about your idea first using [issues](https://github.com/atkinson/margot/issues).\n\nDependencies are kept to a minimum. Generally if there's a way to do something\nin the standard library (or numpy / Pandas), let's do it that way rather than\nadd another library. \n\n# License\nMargot is licensed for use under Apache 2.0. For details see [the License](https://github.com/atkinson/margot/blob/master/LICENSE).\n\n\n",
"bugtrack_url": null,
"license": "apache-2.0",
"summary": "An algorithmic trading framework for PyData.",
"version": "1.13",
"split_keywords": [
"quant",
"trading",
"systematic"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fc000c58329f8c51b107706e00a4f2bca0ca0f088015a01e257ca66a87e7efc8",
"md5": "60beb4aaeeb6b61b797a709b1a9cb9cd",
"sha256": "76e47f52348338a294d428e0e9a71656a9bef637150d9c3feb91c2d9c2ba934c"
},
"downloads": -1,
"filename": "margot-1.13-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "60beb4aaeeb6b61b797a709b1a9cb9cd",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 34503,
"upload_time": "2023-03-29T00:42:30",
"upload_time_iso_8601": "2023-03-29T00:42:30.442972Z",
"url": "https://files.pythonhosted.org/packages/fc/00/0c58329f8c51b107706e00a4f2bca0ca0f088015a01e257ca66a87e7efc8/margot-1.13-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ea16d1db37c2b0d80eb1bd36f82dfd32abf1ba404f22d4554ef2d3f5fc8ea267",
"md5": "40fdc33c4616923d4a25d051c855a61a",
"sha256": "c32a59ef072f274a974bc7edb23d25d30685e9296bd658c8f7bc5b28f49996d6"
},
"downloads": -1,
"filename": "margot-1.13.tar.gz",
"has_sig": false,
"md5_digest": "40fdc33c4616923d4a25d051c855a61a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 42157,
"upload_time": "2023-03-29T00:42:33",
"upload_time_iso_8601": "2023-03-29T00:42:33.719466Z",
"url": "https://files.pythonhosted.org/packages/ea/16/d1db37c2b0d80eb1bd36f82dfd32abf1ba404f22d4554ef2d3f5fc8ea267/margot-1.13.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-29 00:42:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "pymargot",
"github_project": "margot",
"travis_ci": true,
"coveralls": true,
"github_actions": false,
"requirements": [],
"lcname": "margot"
}