margot


Namemargot JSON
Version 1.13 PyPI version JSON
download
home_pagehttps://github.com/pymargot/margot
SummaryAn algorithmic trading framework for PyData.
upload_time2023-03-29 00:42:33
maintainer
docs_urlNone
authorRich Atkinson
requires_python
licenseapache-2.0
keywords quant trading systematic
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            [![](https://api.codacy.com/project/badge/Grade/1d42c486297a49158494e5f31b25793b)](https://app.codacy.com/manual/pymargot/margot?utm_source=github.com&utm_medium=referral&utm_content=pymargot/margot&utm_campaign=Badge_Grade_Dashboard)
[![](https://travis-ci.org/pymargot/margot.svg?branch=master)](https://travis-ci.org/github/pymargot/margot)
[![](https://readthedocs.org/projects/margot/badge/?version=latest)](https://margot.readthedocs.io/en/latest/?badge=latest)
[![](https://codecov.io/gh/pymargot/margot/branch/master/graph/badge.svg)](https://codecov.io/gh/pymargot/margot)
[![](https://img.shields.io/github/license/pymargot/margot)](https://github.com/pymargot/margot/blob/master/LICENSE)
![](https://img.shields.io/pypi/wheel/margot)
![](https://img.shields.io/pypi/pyversions/margot)
[![](https://img.shields.io/pypi/v/margot)](https://pypi.org/project/margot/)


# What is margot?
Margot makes it super easy to backtest trading elgorithms. Firstly, Margot makes
it super easy tocreate neat and tidy Pandas dataframes for time-series analysis.

Margot manages data collection, caching, cleaning, feature generation,
management and persistence using a clean, declarative API. If you've
ever used Django you will find this approach similar to the Django ORM.

Margot also provides a simple framework for writing and backtesting systematic
trading algorithms.

Results from margot's trading algorithms can be analysed using pyfolio.

# Getting Started

    pip install margot

Next you need to make sure you have a couple of important environment variables
set::

    export ALPHAVANTAGE_API_KEY=YOUR_API_KEY
    export DATA_CACHE=PATH_TO_FOLDER_TO_STORE_HDF5_FILES

Once you've done that, try running the code in the [notebook](notebook.margot.data).

# Status
This is still an early stage software project, and should not be used for live
trading just yet.

# Documentation

The documentation is at [readthedocs](https://margot.readthedocs.io/en/latest/).

# Contributing

Feel free to make a pull request or chat about your idea first using [issues](https://github.com/atkinson/margot/issues).

Dependencies are kept to a minimum. Generally if there's a way to do something
in the standard library (or numpy / Pandas), let's do it that way rather than
add another library. 

# License
Margot is licensed for use under Apache 2.0. For details see [the License](https://github.com/atkinson/margot/blob/master/LICENSE).



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pymargot/margot",
    "name": "margot",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "quant,trading,systematic",
    "author": "Rich Atkinson",
    "author_email": "rich@airteam.com.au",
    "download_url": "https://files.pythonhosted.org/packages/ea/16/d1db37c2b0d80eb1bd36f82dfd32abf1ba404f22d4554ef2d3f5fc8ea267/margot-1.13.tar.gz",
    "platform": null,
    "description": "[![](https://api.codacy.com/project/badge/Grade/1d42c486297a49158494e5f31b25793b)](https://app.codacy.com/manual/pymargot/margot?utm_source=github.com&utm_medium=referral&utm_content=pymargot/margot&utm_campaign=Badge_Grade_Dashboard)\n[![](https://travis-ci.org/pymargot/margot.svg?branch=master)](https://travis-ci.org/github/pymargot/margot)\n[![](https://readthedocs.org/projects/margot/badge/?version=latest)](https://margot.readthedocs.io/en/latest/?badge=latest)\n[![](https://codecov.io/gh/pymargot/margot/branch/master/graph/badge.svg)](https://codecov.io/gh/pymargot/margot)\n[![](https://img.shields.io/github/license/pymargot/margot)](https://github.com/pymargot/margot/blob/master/LICENSE)\n![](https://img.shields.io/pypi/wheel/margot)\n![](https://img.shields.io/pypi/pyversions/margot)\n[![](https://img.shields.io/pypi/v/margot)](https://pypi.org/project/margot/)\n\n\n# What is margot?\nMargot makes it super easy to backtest trading elgorithms. Firstly, Margot makes\nit super easy tocreate neat and tidy Pandas dataframes for time-series analysis.\n\nMargot manages data collection, caching, cleaning, feature generation,\nmanagement and persistence using a clean, declarative API. If you've\never used Django you will find this approach similar to the Django ORM.\n\nMargot also provides a simple framework for writing and backtesting systematic\ntrading algorithms.\n\nResults from margot's trading algorithms can be analysed using pyfolio.\n\n# Getting Started\n\n    pip install margot\n\nNext you need to make sure you have a couple of important environment variables\nset::\n\n    export ALPHAVANTAGE_API_KEY=YOUR_API_KEY\n    export DATA_CACHE=PATH_TO_FOLDER_TO_STORE_HDF5_FILES\n\nOnce you've done that, try running the code in the [notebook](notebook.margot.data).\n\n# Status\nThis is still an early stage software project, and should not be used for live\ntrading just yet.\n\n# Documentation\n\nThe documentation is at [readthedocs](https://margot.readthedocs.io/en/latest/).\n\n# Contributing\n\nFeel free to make a pull request or chat about your idea first using [issues](https://github.com/atkinson/margot/issues).\n\nDependencies are kept to a minimum. Generally if there's a way to do something\nin the standard library (or numpy / Pandas), let's do it that way rather than\nadd another library. \n\n# License\nMargot is licensed for use under Apache 2.0. For details see [the License](https://github.com/atkinson/margot/blob/master/LICENSE).\n\n\n",
    "bugtrack_url": null,
    "license": "apache-2.0",
    "summary": "An algorithmic trading framework for PyData.",
    "version": "1.13",
    "split_keywords": [
        "quant",
        "trading",
        "systematic"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc000c58329f8c51b107706e00a4f2bca0ca0f088015a01e257ca66a87e7efc8",
                "md5": "60beb4aaeeb6b61b797a709b1a9cb9cd",
                "sha256": "76e47f52348338a294d428e0e9a71656a9bef637150d9c3feb91c2d9c2ba934c"
            },
            "downloads": -1,
            "filename": "margot-1.13-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "60beb4aaeeb6b61b797a709b1a9cb9cd",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 34503,
            "upload_time": "2023-03-29T00:42:30",
            "upload_time_iso_8601": "2023-03-29T00:42:30.442972Z",
            "url": "https://files.pythonhosted.org/packages/fc/00/0c58329f8c51b107706e00a4f2bca0ca0f088015a01e257ca66a87e7efc8/margot-1.13-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ea16d1db37c2b0d80eb1bd36f82dfd32abf1ba404f22d4554ef2d3f5fc8ea267",
                "md5": "40fdc33c4616923d4a25d051c855a61a",
                "sha256": "c32a59ef072f274a974bc7edb23d25d30685e9296bd658c8f7bc5b28f49996d6"
            },
            "downloads": -1,
            "filename": "margot-1.13.tar.gz",
            "has_sig": false,
            "md5_digest": "40fdc33c4616923d4a25d051c855a61a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 42157,
            "upload_time": "2023-03-29T00:42:33",
            "upload_time_iso_8601": "2023-03-29T00:42:33.719466Z",
            "url": "https://files.pythonhosted.org/packages/ea/16/d1db37c2b0d80eb1bd36f82dfd32abf1ba404f22d4554ef2d3f5fc8ea267/margot-1.13.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-29 00:42:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "pymargot",
    "github_project": "margot",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": false,
    "requirements": [],
    "lcname": "margot"
}
        
Elapsed time: 0.20507s