marie-ai


Namemarie-ai JSON
Version 3.0.28 PyPI version JSON
download
home_pagehttps://github.com/marieai/marie-ai/
SummaryPython library to Integrate AI-powered features into your applications
upload_time2024-02-15 12:51:28
maintainer
docs_urlNone
authorMarie AI
requires_python
licenseApache 2.0
keywords marie-ai ocr icr index elastic neural-network encoding embedding serving docker container image video audio deep-learning mlops
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
# Marie-AI

Integrate AI-powered document pipeline into your applications

## Documentation

See the [MarieAI docs](https://docs.marieai.co).

## Installation

You don't need this source code unless you want to modify the package. If you just
want to use the package, just run:

```sh
pip install --upgrade marieai
```

Install from source with:

```sh
pip install -e .
```

Build docker container:

```sh
DOCKER_BUILDKIT=1 docker build . --build-arg PIP_TAG="standard" -f ./Dockerfiles/gpu.Dockerfile  -t marieai/marie:3.0-cuda 
```

## Command-line interface

This library additionally provides an `marie` command-line utility which makes it easy to interact with the API 
from your terminal. Run `marie -h` for usage.

## Example code

Examples of how to use this library to accomplish various tasks can be found in the MarieAI documentation. 
It contains code examples for:

* Document cleanup
* Optical character recognition (OCR)
* Document Classification
* Document Splitter
* Named Entity Recognition
* Form detection
* And more


## Run with default entrypoint

```shell
docker run --rm  -it marieai/marie:3.0.19-cuda
```

## Run the server with custom entrypoint

```shell
docker run --rm  -it --entrypoint /bin/bash  marieai/marie:3.0.19-cuda  
```

## Telemetry
https://telemetry.marieai.co/

TODO :MOVE TO DOCS

# S3 Cloud Storage
```shell
docker compose -f  docker-compose.s3.yml --project-directory . up  --build --remove-orphans
```

CrossFTP


## Configure AWS CLI Credentials.

```shell
vi ~/.aws/credentials
[marie] # this should be in the file
aws_access_key_id=your_access_key_id
aws_secret_access_key=your_secret_access_key
```

 

## Pull the Docker image.

```shell
docker pull zenko/cloudserver
```

## Create and start the container.


```sh
docker run --rm -it --name marie-s3-server -p 8000:8000 \
-e SCALITY_ACCESS_KEY_ID=MARIEACCESSKEY \
-e SCALITY_SECRET_ACCESS_KEY=MARIESECRETACCESSKEY \
-e S3DATA=multiple \
-e S3BACKEND=mem zenko/cloudserver
```

```
SCALITY_ACCESS_KEY_ID : Your AWS ACCESS KEY 
SCALITY_SECRET_ACCESS_KEY: Your AWS SECRET ACCESS KEY 
S3BACKEND: Currently using memory storage
```

## Verify Installation.

```shell
aws s3 mb s3://mybucket  --profile marie --endpoint-url http://localhost:8000 --region us-west-2
```

```shell
aws s3 ls --profile marie --endpoint-url http://localhost:8000
```

```shell
aws s3 cp some_file.txt s3://mybucket  --profile marie --endpoint-url http://localhost:8000
```


```shell
aws s3 --profile marie --endpoint-url=http://127.0.0.1:8000 ls --recursive s3://
```

# Production setup


Configuration for the S3 server will be stored in the following files:
https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/marieai/marie-ai/",
    "name": "marie-ai",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "marie-ai ocr icr index elastic neural-network encoding embedding serving docker container image video audio deep-learning mlops",
    "author": "Marie AI",
    "author_email": "hello@marieai.co",
    "download_url": "https://files.pythonhosted.org/packages/50/98/000a42a6b53aceac1a0276fbb43a3965918bb01d5159c8c24c5e247010c8/marie-ai-3.0.28.tar.gz",
    "platform": null,
    "description": "[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n# Marie-AI\n\nIntegrate AI-powered document pipeline into your applications\n\n## Documentation\n\nSee the [MarieAI docs](https://docs.marieai.co).\n\n## Installation\n\nYou don't need this source code unless you want to modify the package. If you just\nwant to use the package, just run:\n\n```sh\npip install --upgrade marieai\n```\n\nInstall from source with:\n\n```sh\npip install -e .\n```\n\nBuild docker container:\n\n```sh\nDOCKER_BUILDKIT=1 docker build . --build-arg PIP_TAG=\"standard\" -f ./Dockerfiles/gpu.Dockerfile  -t marieai/marie:3.0-cuda \n```\n\n## Command-line interface\n\nThis library additionally provides an `marie` command-line utility which makes it easy to interact with the API \nfrom your terminal. Run `marie -h` for usage.\n\n## Example code\n\nExamples of how to use this library to accomplish various tasks can be found in the MarieAI documentation. \nIt contains code examples for:\n\n* Document cleanup\n* Optical character recognition (OCR)\n* Document Classification\n* Document Splitter\n* Named Entity Recognition\n* Form detection\n* And more\n\n\n## Run with default entrypoint\n\n```shell\ndocker run --rm  -it marieai/marie:3.0.19-cuda\n```\n\n## Run the server with custom entrypoint\n\n```shell\ndocker run --rm  -it --entrypoint /bin/bash  marieai/marie:3.0.19-cuda  \n```\n\n## Telemetry\nhttps://telemetry.marieai.co/\n\nTODO :MOVE TO DOCS\n\n# S3 Cloud Storage\n```shell\ndocker compose -f  docker-compose.s3.yml --project-directory . up  --build --remove-orphans\n```\n\nCrossFTP\n\n\n## Configure AWS CLI Credentials.\n\n```shell\nvi ~/.aws/credentials\n[marie] # this should be in the file\naws_access_key_id=your_access_key_id\naws_secret_access_key=your_secret_access_key\n```\n\n \n\n## Pull the Docker image.\n\n```shell\ndocker pull zenko/cloudserver\n```\n\n## Create and start the container.\n\n\n```sh\ndocker run --rm -it --name marie-s3-server -p 8000:8000 \\\n-e SCALITY_ACCESS_KEY_ID=MARIEACCESSKEY \\\n-e SCALITY_SECRET_ACCESS_KEY=MARIESECRETACCESSKEY \\\n-e S3DATA=multiple \\\n-e S3BACKEND=mem zenko/cloudserver\n```\n\n```\nSCALITY_ACCESS_KEY_ID : Your AWS ACCESS KEY \nSCALITY_SECRET_ACCESS_KEY: Your AWS SECRET ACCESS KEY \nS3BACKEND: Currently using memory storage\n```\n\n## Verify Installation.\n\n```shell\naws s3 mb s3://mybucket  --profile marie --endpoint-url http://localhost:8000 --region us-west-2\n```\n\n```shell\naws s3 ls --profile marie --endpoint-url http://localhost:8000\n```\n\n```shell\naws s3 cp some_file.txt s3://mybucket  --profile marie --endpoint-url http://localhost:8000\n```\n\n\n```shell\naws s3 --profile marie --endpoint-url=http://127.0.0.1:8000 ls --recursive s3://\n```\n\n# Production setup\n\n\nConfiguration for the S3 server will be stored in the following files:\nhttps://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Python library to Integrate AI-powered features into your applications",
    "version": "3.0.28",
    "project_urls": {
        "Documentation": "https://docs.marieai.co",
        "Download": "https://github.com/marieai/marie-ai/tags",
        "Homepage": "https://github.com/marieai/marie-ai/",
        "Source": "https://github.com/marieai/marie-ai.git",
        "Tracker": "https://github.com/marieai/marie-ai/issues"
    },
    "split_keywords": [
        "marie-ai",
        "ocr",
        "icr",
        "index",
        "elastic",
        "neural-network",
        "encoding",
        "embedding",
        "serving",
        "docker",
        "container",
        "image",
        "video",
        "audio",
        "deep-learning",
        "mlops"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5098000a42a6b53aceac1a0276fbb43a3965918bb01d5159c8c24c5e247010c8",
                "md5": "216e3def2ca9ff6090e5ad6573c74547",
                "sha256": "c4683f96a38706cec1bb02ec71ef0809046e7f7e5b8e4c617188ca25d357638d"
            },
            "downloads": -1,
            "filename": "marie-ai-3.0.28.tar.gz",
            "has_sig": false,
            "md5_digest": "216e3def2ca9ff6090e5ad6573c74547",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 27950129,
            "upload_time": "2024-02-15T12:51:28",
            "upload_time_iso_8601": "2024-02-15T12:51:28.339641Z",
            "url": "https://files.pythonhosted.org/packages/50/98/000a42a6b53aceac1a0276fbb43a3965918bb01d5159c8c24c5e247010c8/marie-ai-3.0.28.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-15 12:51:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "marieai",
    "github_project": "marie-ai",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "marie-ai"
}
        
Elapsed time: 0.64569s