[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
# Marie-AI
Integrate AI-powered document pipeline into your applications
## Documentation
See the [MarieAI docs](https://docs.marieai.co).
## Installation
You don't need this source code unless you want to modify the package. If you just
want to use the package, just run:
```sh
pip install --upgrade marieai
```
Install from source with:
```sh
pip install -e .
```
Build docker container:
```sh
DOCKER_BUILDKIT=1 docker build . --build-arg PIP_TAG="standard" -f ./Dockerfiles/gpu.Dockerfile -t marieai/marie:3.0-cuda
```
## Command-line interface
This library additionally provides an `marie` command-line utility which makes it easy to interact with the API
from your terminal. Run `marie -h` for usage.
## Example code
Examples of how to use this library to accomplish various tasks can be found in the MarieAI documentation.
It contains code examples for:
* Document cleanup
* Optical character recognition (OCR)
* Document Classification
* Document Splitter
* Named Entity Recognition
* Form detection
* And more
## Run with default entrypoint
```shell
docker run --rm -it marieai/marie:3.0.19-cuda
```
## Run the server with custom entrypoint
```shell
docker run --rm -it --entrypoint /bin/bash marieai/marie:3.0.19-cuda
```
## Telemetry
https://telemetry.marieai.co/
TODO :MOVE TO DOCS
# S3 Cloud Storage
```shell
docker compose -f docker-compose.s3.yml --project-directory . up --build --remove-orphans
```
CrossFTP
## Configure AWS CLI Credentials.
```shell
vi ~/.aws/credentials
[marie] # this should be in the file
aws_access_key_id=your_access_key_id
aws_secret_access_key=your_secret_access_key
```
## Pull the Docker image.
```shell
docker pull zenko/cloudserver
```
## Create and start the container.
```sh
docker run --rm -it --name marie-s3-server -p 8000:8000 \
-e SCALITY_ACCESS_KEY_ID=MARIEACCESSKEY \
-e SCALITY_SECRET_ACCESS_KEY=MARIESECRETACCESSKEY \
-e S3DATA=multiple \
-e S3BACKEND=mem zenko/cloudserver
```
```
SCALITY_ACCESS_KEY_ID : Your AWS ACCESS KEY
SCALITY_SECRET_ACCESS_KEY: Your AWS SECRET ACCESS KEY
S3BACKEND: Currently using memory storage
```
## Verify Installation.
```shell
aws s3 mb s3://mybucket --profile marie --endpoint-url http://localhost:8000 --region us-west-2
```
```shell
aws s3 ls --profile marie --endpoint-url http://localhost:8000
```
```shell
aws s3 cp some_file.txt s3://mybucket --profile marie --endpoint-url http://localhost:8000
```
```shell
aws s3 --profile marie --endpoint-url=http://127.0.0.1:8000 ls --recursive s3://
```
# Production setup
Configuration for the S3 server will be stored in the following files:
https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628
Raw data
{
"_id": null,
"home_page": "https://github.com/marieai/marie-ai/",
"name": "marie-ai",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "marie-ai ocr icr index elastic neural-network encoding embedding serving docker container image video audio deep-learning mlops",
"author": "Marie AI",
"author_email": "hello@marieai.co",
"download_url": "https://files.pythonhosted.org/packages/50/98/000a42a6b53aceac1a0276fbb43a3965918bb01d5159c8c24c5e247010c8/marie-ai-3.0.28.tar.gz",
"platform": null,
"description": "[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n# Marie-AI\n\nIntegrate AI-powered document pipeline into your applications\n\n## Documentation\n\nSee the [MarieAI docs](https://docs.marieai.co).\n\n## Installation\n\nYou don't need this source code unless you want to modify the package. If you just\nwant to use the package, just run:\n\n```sh\npip install --upgrade marieai\n```\n\nInstall from source with:\n\n```sh\npip install -e .\n```\n\nBuild docker container:\n\n```sh\nDOCKER_BUILDKIT=1 docker build . --build-arg PIP_TAG=\"standard\" -f ./Dockerfiles/gpu.Dockerfile -t marieai/marie:3.0-cuda \n```\n\n## Command-line interface\n\nThis library additionally provides an `marie` command-line utility which makes it easy to interact with the API \nfrom your terminal. Run `marie -h` for usage.\n\n## Example code\n\nExamples of how to use this library to accomplish various tasks can be found in the MarieAI documentation. \nIt contains code examples for:\n\n* Document cleanup\n* Optical character recognition (OCR)\n* Document Classification\n* Document Splitter\n* Named Entity Recognition\n* Form detection\n* And more\n\n\n## Run with default entrypoint\n\n```shell\ndocker run --rm -it marieai/marie:3.0.19-cuda\n```\n\n## Run the server with custom entrypoint\n\n```shell\ndocker run --rm -it --entrypoint /bin/bash marieai/marie:3.0.19-cuda \n```\n\n## Telemetry\nhttps://telemetry.marieai.co/\n\nTODO :MOVE TO DOCS\n\n# S3 Cloud Storage\n```shell\ndocker compose -f docker-compose.s3.yml --project-directory . up --build --remove-orphans\n```\n\nCrossFTP\n\n\n## Configure AWS CLI Credentials.\n\n```shell\nvi ~/.aws/credentials\n[marie] # this should be in the file\naws_access_key_id=your_access_key_id\naws_secret_access_key=your_secret_access_key\n```\n\n \n\n## Pull the Docker image.\n\n```shell\ndocker pull zenko/cloudserver\n```\n\n## Create and start the container.\n\n\n```sh\ndocker run --rm -it --name marie-s3-server -p 8000:8000 \\\n-e SCALITY_ACCESS_KEY_ID=MARIEACCESSKEY \\\n-e SCALITY_SECRET_ACCESS_KEY=MARIESECRETACCESSKEY \\\n-e S3DATA=multiple \\\n-e S3BACKEND=mem zenko/cloudserver\n```\n\n```\nSCALITY_ACCESS_KEY_ID : Your AWS ACCESS KEY \nSCALITY_SECRET_ACCESS_KEY: Your AWS SECRET ACCESS KEY \nS3BACKEND: Currently using memory storage\n```\n\n## Verify Installation.\n\n```shell\naws s3 mb s3://mybucket --profile marie --endpoint-url http://localhost:8000 --region us-west-2\n```\n\n```shell\naws s3 ls --profile marie --endpoint-url http://localhost:8000\n```\n\n```shell\naws s3 cp some_file.txt s3://mybucket --profile marie --endpoint-url http://localhost:8000\n```\n\n\n```shell\naws s3 --profile marie --endpoint-url=http://127.0.0.1:8000 ls --recursive s3://\n```\n\n# Production setup\n\n\nConfiguration for the S3 server will be stored in the following files:\nhttps://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Python library to Integrate AI-powered features into your applications",
"version": "3.0.28",
"project_urls": {
"Documentation": "https://docs.marieai.co",
"Download": "https://github.com/marieai/marie-ai/tags",
"Homepage": "https://github.com/marieai/marie-ai/",
"Source": "https://github.com/marieai/marie-ai.git",
"Tracker": "https://github.com/marieai/marie-ai/issues"
},
"split_keywords": [
"marie-ai",
"ocr",
"icr",
"index",
"elastic",
"neural-network",
"encoding",
"embedding",
"serving",
"docker",
"container",
"image",
"video",
"audio",
"deep-learning",
"mlops"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5098000a42a6b53aceac1a0276fbb43a3965918bb01d5159c8c24c5e247010c8",
"md5": "216e3def2ca9ff6090e5ad6573c74547",
"sha256": "c4683f96a38706cec1bb02ec71ef0809046e7f7e5b8e4c617188ca25d357638d"
},
"downloads": -1,
"filename": "marie-ai-3.0.28.tar.gz",
"has_sig": false,
"md5_digest": "216e3def2ca9ff6090e5ad6573c74547",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 27950129,
"upload_time": "2024-02-15T12:51:28",
"upload_time_iso_8601": "2024-02-15T12:51:28.339641Z",
"url": "https://files.pythonhosted.org/packages/50/98/000a42a6b53aceac1a0276fbb43a3965918bb01d5159c8c24c5e247010c8/marie-ai-3.0.28.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-15 12:51:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "marieai",
"github_project": "marie-ai",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "marie-ai"
}