mase-triton


Namemase-triton JSON
Version 0.0.3 PyPI version JSON
download
home_pageNone
SummaryTriton kernels for MASE
upload_time2025-07-09 10:24:16
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords deep-learning mase triton
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MASE-Triton

Software-emulation & acceleration triton kernels for [MASE](https://github.com/DeepWok/mase).

## Install

Please ensure you are using Python 3.11 or later, and run MASE-Triton on **CUDA-enabled GPU**.

### PyPI

```bash
pip install mase-triton
```

### Build from Source

1. Install tox

    ```bash
    pip install tox
    ```

2. Build & Install

    ```bash
    tox -e build
    ```

    Then the wheel file will be generated in `dist/` folder.
    You can install it by `pip install path/to/wheel/file.whl`


## Functionality
- Random Bitflip
    - [`random_bitflip_fn`](/src/mase_triton/random_bitflip/core.py): random bitflip function with backward support.
    - [`layers.py`](/src/mase_triton/random_bitflip/layers.py): subclasses of `torch.nn.Module` that can be used in neural networks.
        - `RandomBitflipDropout`
        - `RandomBitflipLinear`
- MXFP: Simulate MXFP formats (Note that subnormal numbers are flushed to zero)
    - [`functional`](/src/mase_triton/mxfp/functional/__init__.py)
        - `extract_mxfp_tensor`: Cast a tensor to MXFP format (extracting the shared exponent and Minifloat elements).
        - `compose_mxfp_tensor`: Cast an MXFP tensor to FP format (composing MXFP components).
        - `mxfp_linear`: functional linear operation with MXFP support.
        - `mxfp_matmul`: functional matrix multiplication with MXFP support.
    - [`layers`](/src/mase_triton/mxfp/layers.py)
        - `MXFPLinearPTQ`: Linear layer with MXFP support for post-training quantization (no back propagation support).


## Dev

1. Install [tox](https://tox.wiki/en/latest/index.html)
    ```
    pip install tox
    ```

2. Create Dev Environment
    ```
    tox -e dev
    ```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mase-triton",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "Cheng Zhang <chengzhang98@outlook.com>",
    "keywords": "deep-learning, mase, triton",
    "author": null,
    "author_email": "Cheng Zhang <chengzhang98@outlook.com>",
    "download_url": "https://files.pythonhosted.org/packages/09/47/1e7c773e455599c7e74d27e361da91fe90d28bb203d04263fa42997860ee/mase_triton-0.0.3.tar.gz",
    "platform": null,
    "description": "# MASE-Triton\n\nSoftware-emulation & acceleration triton kernels for [MASE](https://github.com/DeepWok/mase).\n\n## Install\n\nPlease ensure you are using Python 3.11 or later, and run MASE-Triton on **CUDA-enabled GPU**.\n\n### PyPI\n\n```bash\npip install mase-triton\n```\n\n### Build from Source\n\n1. Install tox\n\n    ```bash\n    pip install tox\n    ```\n\n2. Build & Install\n\n    ```bash\n    tox -e build\n    ```\n\n    Then the wheel file will be generated in `dist/` folder.\n    You can install it by `pip install path/to/wheel/file.whl`\n\n\n## Functionality\n- Random Bitflip\n    - [`random_bitflip_fn`](/src/mase_triton/random_bitflip/core.py): random bitflip function with backward support.\n    - [`layers.py`](/src/mase_triton/random_bitflip/layers.py): subclasses of `torch.nn.Module` that can be used in neural networks.\n        - `RandomBitflipDropout`\n        - `RandomBitflipLinear`\n- MXFP: Simulate MXFP formats (Note that subnormal numbers are flushed to zero)\n    - [`functional`](/src/mase_triton/mxfp/functional/__init__.py)\n        - `extract_mxfp_tensor`: Cast a tensor to MXFP format (extracting the shared exponent and Minifloat elements).\n        - `compose_mxfp_tensor`: Cast an MXFP tensor to FP format (composing MXFP components).\n        - `mxfp_linear`: functional linear operation with MXFP support.\n        - `mxfp_matmul`: functional matrix multiplication with MXFP support.\n    - [`layers`](/src/mase_triton/mxfp/layers.py)\n        - `MXFPLinearPTQ`: Linear layer with MXFP support for post-training quantization (no back propagation support).\n\n\n## Dev\n\n1. Install [tox](https://tox.wiki/en/latest/index.html)\n    ```\n    pip install tox\n    ```\n\n2. Create Dev Environment\n    ```\n    tox -e dev\n    ```",
    "bugtrack_url": null,
    "license": null,
    "summary": "Triton kernels for MASE",
    "version": "0.0.3",
    "project_urls": {
        "Repository": "https://github.com/DeepWok/mase-triton.git"
    },
    "split_keywords": [
        "deep-learning",
        " mase",
        " triton"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6280d1d6cbbfa7e5870b8ffac6b5ee64636bb5bb897a16e5111e93ac735319dd",
                "md5": "f6acb392db94a3312739d3fb7e981ab7",
                "sha256": "8566f49f3a5b15a7ea523eef065c522f51e833181f8c8f08d8a8285fb075c6c6"
            },
            "downloads": -1,
            "filename": "mase_triton-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f6acb392db94a3312739d3fb7e981ab7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 34961,
            "upload_time": "2025-07-09T10:24:14",
            "upload_time_iso_8601": "2025-07-09T10:24:14.544602Z",
            "url": "https://files.pythonhosted.org/packages/62/80/d1d6cbbfa7e5870b8ffac6b5ee64636bb5bb897a16e5111e93ac735319dd/mase_triton-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "09471e7c773e455599c7e74d27e361da91fe90d28bb203d04263fa42997860ee",
                "md5": "d2bcea9156d72fdb4b627226d9af7e96",
                "sha256": "aae3eff70dd8efcfb4a4f575a1b79e121c03e0912746d23d2c7b127c1bc6815c"
            },
            "downloads": -1,
            "filename": "mase_triton-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d2bcea9156d72fdb4b627226d9af7e96",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 30660,
            "upload_time": "2025-07-09T10:24:16",
            "upload_time_iso_8601": "2025-07-09T10:24:16.599677Z",
            "url": "https://files.pythonhosted.org/packages/09/47/1e7c773e455599c7e74d27e361da91fe90d28bb203d04263fa42997860ee/mase_triton-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-09 10:24:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DeepWok",
    "github_project": "mase-triton",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mase-triton"
}
        
Elapsed time: 0.60255s