mashlib


Namemashlib JSON
Version 0.1.7 PyPI version JSON
download
home_pagehttps://github.com/moonshinelabs-ai/mash
SummaryCommon library tools for Moonshine AI
upload_time2024-11-26 23:52:23
maintainerNone
docs_urlNone
authorNate Harada
requires_python<4.0,>=3.10
licenseMIT
keywords moonshine library
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <br />
<p align="center">
    <a href="https://github.com/moonshinelabs-ai/moonshine">
      <img src="https://moonshine-assets.s3.us-west-2.amazonaws.com/mash_full_logo_light.png" width="50%"/>
    </a>
</p>

<h2><p align="center">Shared utility functions powering Moonshine tools.</p></h2>

<p align="center">
    <a href="https://moonshine-mash.readthedocs.io/en/latest/">
        <img alt="Documentation" src="https://readthedocs.org/projects/moonshine-mash/badge/?version=latest">
    </a>
    <a href="https://pypi.org/project/moonshinelabs-ai/">
        <img alt="PyPi Version" src="https://img.shields.io/pypi/pyversions/mashlib">
    </a>
    <a href="https://pypi.org/project/mashlib/">
        <img alt="PyPi Package Version" src="https://img.shields.io/pypi/v/mashlib">
    </a>
    <a href="https://pepy.tech/project/mashlib/">
        <img alt="PyPi Downloads" src="https://static.pepy.tech/personalized-badge/mashlib?period=month&units=international_system&left_color=grey&right_color=blue&left_text=Downloads/month">
    </a>
    <a href="https://join.slack.com/t/moonshinecommunity/shared_invite/zt-1rg1vnvmt-pleUR7TducaDiAhcmnqAQQ">
        <img alt="Chat on Slack" src="https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack">
    </a>
    <a href="https://github.com/moonshinelabs-ai/moonshine/blob/main/LICENSE">
        <img alt="License" src="https://img.shields.io/badge/license-MIT-green">
    </a>
</p>
<br />

## What is Mash?
Mash is a straightforward utility library for common tasks in computer vision and deep model training. The library was broken out of previous Moonshine projects like Moonshine and Zeroshot.

## What can Mash Do?
Mash broadly supports a few utilities, but the main ones are:

1. Easy image conversion: simply call `to_pil`, `to_numpy`, and `to_tensor` to convert image formats. Accepts other images, URLs, or local files.
2. Image processing files: convenience functions like `crop_to_multiple_of_dimensions` for transformer based patch models like ViT.
3. Console UI: for long running jobs, a fullscreen console utility that has a progress bar at the bottom and text logging.
4. Cloud functions: use `glob` or `exists` on AWS or GCS links.

For a complete list of functions, see [the documentation](https://moonshine-mash.readthedocs.io/en/latest/index.html)

## Installation
To install via pip:

`pip install mashlib`

## Usage
To use:

```python
# Import base package
import mash

# Import image processing
import mash.images as mi
image = mi.to_numpy("/path/to/image.png")
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/moonshinelabs-ai/mash",
    "name": "mashlib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "moonshine, library",
    "author": "Nate Harada",
    "author_email": "mash@moonshinelabs.ai",
    "download_url": "https://files.pythonhosted.org/packages/22/4d/e1f83dc023b87e174bd5dcddbcb2476ae388dcbe5ed9d68530a5e718cc83/mashlib-0.1.7.tar.gz",
    "platform": null,
    "description": "<br />\n<p align=\"center\">\n    <a href=\"https://github.com/moonshinelabs-ai/moonshine\">\n      <img src=\"https://moonshine-assets.s3.us-west-2.amazonaws.com/mash_full_logo_light.png\" width=\"50%\"/>\n    </a>\n</p>\n\n<h2><p align=\"center\">Shared utility functions powering Moonshine tools.</p></h2>\n\n<p align=\"center\">\n    <a href=\"https://moonshine-mash.readthedocs.io/en/latest/\">\n        <img alt=\"Documentation\" src=\"https://readthedocs.org/projects/moonshine-mash/badge/?version=latest\">\n    </a>\n    <a href=\"https://pypi.org/project/moonshinelabs-ai/\">\n        <img alt=\"PyPi Version\" src=\"https://img.shields.io/pypi/pyversions/mashlib\">\n    </a>\n    <a href=\"https://pypi.org/project/mashlib/\">\n        <img alt=\"PyPi Package Version\" src=\"https://img.shields.io/pypi/v/mashlib\">\n    </a>\n    <a href=\"https://pepy.tech/project/mashlib/\">\n        <img alt=\"PyPi Downloads\" src=\"https://static.pepy.tech/personalized-badge/mashlib?period=month&units=international_system&left_color=grey&right_color=blue&left_text=Downloads/month\">\n    </a>\n    <a href=\"https://join.slack.com/t/moonshinecommunity/shared_invite/zt-1rg1vnvmt-pleUR7TducaDiAhcmnqAQQ\">\n        <img alt=\"Chat on Slack\" src=\"https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack\">\n    </a>\n    <a href=\"https://github.com/moonshinelabs-ai/moonshine/blob/main/LICENSE\">\n        <img alt=\"License\" src=\"https://img.shields.io/badge/license-MIT-green\">\n    </a>\n</p>\n<br />\n\n## What is Mash?\nMash is a straightforward utility library for common tasks in computer vision and deep model training. The library was broken out of previous Moonshine projects like Moonshine and Zeroshot.\n\n## What can Mash Do?\nMash broadly supports a few utilities, but the main ones are:\n\n1. Easy image conversion: simply call `to_pil`, `to_numpy`, and `to_tensor` to convert image formats. Accepts other images, URLs, or local files.\n2. Image processing files: convenience functions like `crop_to_multiple_of_dimensions` for transformer based patch models like ViT.\n3. Console UI: for long running jobs, a fullscreen console utility that has a progress bar at the bottom and text logging.\n4. Cloud functions: use `glob` or `exists` on AWS or GCS links.\n\nFor a complete list of functions, see [the documentation](https://moonshine-mash.readthedocs.io/en/latest/index.html)\n\n## Installation\nTo install via pip:\n\n`pip install mashlib`\n\n## Usage\nTo use:\n\n```python\n# Import base package\nimport mash\n\n# Import image processing\nimport mash.images as mi\nimage = mi.to_numpy(\"/path/to/image.png\")\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Common library tools for Moonshine AI",
    "version": "0.1.7",
    "project_urls": {
        "Homepage": "https://github.com/moonshinelabs-ai/mash",
        "Repository": "https://github.com/moonshinelabs-ai/mash"
    },
    "split_keywords": [
        "moonshine",
        " library"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0929d4fca5410eeee286b283f65d864d9acb86192c3528a523fa1de32310813b",
                "md5": "d99a6481b2c2df5523c54ea1a076c7cc",
                "sha256": "704f918a94fbb8756e83c725318241621ada0db2d1fce99334cff8245c2d7203"
            },
            "downloads": -1,
            "filename": "mashlib-0.1.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d99a6481b2c2df5523c54ea1a076c7cc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 19520,
            "upload_time": "2024-11-26T23:52:21",
            "upload_time_iso_8601": "2024-11-26T23:52:21.403220Z",
            "url": "https://files.pythonhosted.org/packages/09/29/d4fca5410eeee286b283f65d864d9acb86192c3528a523fa1de32310813b/mashlib-0.1.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "224de1f83dc023b87e174bd5dcddbcb2476ae388dcbe5ed9d68530a5e718cc83",
                "md5": "dfaff7d153d3436548ccbf55a60f3b0a",
                "sha256": "0c5b1517f591857dda4922f900d52118ce29645848c5a5a96ee16d18a0e276d2"
            },
            "downloads": -1,
            "filename": "mashlib-0.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "dfaff7d153d3436548ccbf55a60f3b0a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 14384,
            "upload_time": "2024-11-26T23:52:23",
            "upload_time_iso_8601": "2024-11-26T23:52:23.126585Z",
            "url": "https://files.pythonhosted.org/packages/22/4d/e1f83dc023b87e174bd5dcddbcb2476ae388dcbe5ed9d68530a5e718cc83/mashlib-0.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-26 23:52:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "moonshinelabs-ai",
    "github_project": "mash",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mashlib"
}
        
Elapsed time: 0.47524s