<br />
<p align="center">
<a href="https://github.com/moonshinelabs-ai/moonshine">
<img src="https://moonshine-assets.s3.us-west-2.amazonaws.com/mash_full_logo_light.png" width="50%"/>
</a>
</p>
<h2><p align="center">Shared utility functions powering Moonshine tools.</p></h2>
<p align="center">
<a href="https://moonshine-mash.readthedocs.io/en/latest/">
<img alt="Documentation" src="https://readthedocs.org/projects/moonshine-mash/badge/?version=latest">
</a>
<a href="https://pypi.org/project/moonshinelabs-ai/">
<img alt="PyPi Version" src="https://img.shields.io/pypi/pyversions/mashlib">
</a>
<a href="https://pypi.org/project/mashlib/">
<img alt="PyPi Package Version" src="https://img.shields.io/pypi/v/mashlib">
</a>
<a href="https://pepy.tech/project/mashlib/">
<img alt="PyPi Downloads" src="https://static.pepy.tech/personalized-badge/mashlib?period=month&units=international_system&left_color=grey&right_color=blue&left_text=Downloads/month">
</a>
<a href="https://join.slack.com/t/moonshinecommunity/shared_invite/zt-1rg1vnvmt-pleUR7TducaDiAhcmnqAQQ">
<img alt="Chat on Slack" src="https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack">
</a>
<a href="https://github.com/moonshinelabs-ai/moonshine/blob/main/LICENSE">
<img alt="License" src="https://img.shields.io/badge/license-MIT-green">
</a>
</p>
<br />
## What is Mash?
Mash is a straightforward utility library for common tasks in computer vision and deep model training. The library was broken out of previous Moonshine projects like Moonshine and Zeroshot.
## What can Mash Do?
Mash broadly supports a few utilities, but the main ones are:
1. Easy image conversion: simply call `to_pil`, `to_numpy`, and `to_tensor` to convert image formats. Accepts other images, URLs, or local files.
2. Image processing files: convenience functions like `crop_to_multiple_of_dimensions` for transformer based patch models like ViT.
3. Console UI: for long running jobs, a fullscreen console utility that has a progress bar at the bottom and text logging.
4. Cloud functions: use `glob` or `exists` on AWS or GCS links.
For a complete list of functions, see [the documentation](https://moonshine-mash.readthedocs.io/en/latest/index.html)
## Installation
To install via pip:
`pip install mashlib`
## Usage
To use:
```python
# Import base package
import mash
# Import image processing
import mash.images as mi
image = mi.to_numpy("/path/to/image.png")
```
Raw data
{
"_id": null,
"home_page": "https://github.com/moonshinelabs-ai/mash",
"name": "mashlib",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "moonshine, library",
"author": "Nate Harada",
"author_email": "mash@moonshinelabs.ai",
"download_url": "https://files.pythonhosted.org/packages/22/4d/e1f83dc023b87e174bd5dcddbcb2476ae388dcbe5ed9d68530a5e718cc83/mashlib-0.1.7.tar.gz",
"platform": null,
"description": "<br />\n<p align=\"center\">\n <a href=\"https://github.com/moonshinelabs-ai/moonshine\">\n <img src=\"https://moonshine-assets.s3.us-west-2.amazonaws.com/mash_full_logo_light.png\" width=\"50%\"/>\n </a>\n</p>\n\n<h2><p align=\"center\">Shared utility functions powering Moonshine tools.</p></h2>\n\n<p align=\"center\">\n <a href=\"https://moonshine-mash.readthedocs.io/en/latest/\">\n <img alt=\"Documentation\" src=\"https://readthedocs.org/projects/moonshine-mash/badge/?version=latest\">\n </a>\n <a href=\"https://pypi.org/project/moonshinelabs-ai/\">\n <img alt=\"PyPi Version\" src=\"https://img.shields.io/pypi/pyversions/mashlib\">\n </a>\n <a href=\"https://pypi.org/project/mashlib/\">\n <img alt=\"PyPi Package Version\" src=\"https://img.shields.io/pypi/v/mashlib\">\n </a>\n <a href=\"https://pepy.tech/project/mashlib/\">\n <img alt=\"PyPi Downloads\" src=\"https://static.pepy.tech/personalized-badge/mashlib?period=month&units=international_system&left_color=grey&right_color=blue&left_text=Downloads/month\">\n </a>\n <a href=\"https://join.slack.com/t/moonshinecommunity/shared_invite/zt-1rg1vnvmt-pleUR7TducaDiAhcmnqAQQ\">\n <img alt=\"Chat on Slack\" src=\"https://img.shields.io/badge/slack-chat-2eb67d.svg?logo=slack\">\n </a>\n <a href=\"https://github.com/moonshinelabs-ai/moonshine/blob/main/LICENSE\">\n <img alt=\"License\" src=\"https://img.shields.io/badge/license-MIT-green\">\n </a>\n</p>\n<br />\n\n## What is Mash?\nMash is a straightforward utility library for common tasks in computer vision and deep model training. The library was broken out of previous Moonshine projects like Moonshine and Zeroshot.\n\n## What can Mash Do?\nMash broadly supports a few utilities, but the main ones are:\n\n1. Easy image conversion: simply call `to_pil`, `to_numpy`, and `to_tensor` to convert image formats. Accepts other images, URLs, or local files.\n2. Image processing files: convenience functions like `crop_to_multiple_of_dimensions` for transformer based patch models like ViT.\n3. Console UI: for long running jobs, a fullscreen console utility that has a progress bar at the bottom and text logging.\n4. Cloud functions: use `glob` or `exists` on AWS or GCS links.\n\nFor a complete list of functions, see [the documentation](https://moonshine-mash.readthedocs.io/en/latest/index.html)\n\n## Installation\nTo install via pip:\n\n`pip install mashlib`\n\n## Usage\nTo use:\n\n```python\n# Import base package\nimport mash\n\n# Import image processing\nimport mash.images as mi\nimage = mi.to_numpy(\"/path/to/image.png\")\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "Common library tools for Moonshine AI",
"version": "0.1.7",
"project_urls": {
"Homepage": "https://github.com/moonshinelabs-ai/mash",
"Repository": "https://github.com/moonshinelabs-ai/mash"
},
"split_keywords": [
"moonshine",
" library"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0929d4fca5410eeee286b283f65d864d9acb86192c3528a523fa1de32310813b",
"md5": "d99a6481b2c2df5523c54ea1a076c7cc",
"sha256": "704f918a94fbb8756e83c725318241621ada0db2d1fce99334cff8245c2d7203"
},
"downloads": -1,
"filename": "mashlib-0.1.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d99a6481b2c2df5523c54ea1a076c7cc",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 19520,
"upload_time": "2024-11-26T23:52:21",
"upload_time_iso_8601": "2024-11-26T23:52:21.403220Z",
"url": "https://files.pythonhosted.org/packages/09/29/d4fca5410eeee286b283f65d864d9acb86192c3528a523fa1de32310813b/mashlib-0.1.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "224de1f83dc023b87e174bd5dcddbcb2476ae388dcbe5ed9d68530a5e718cc83",
"md5": "dfaff7d153d3436548ccbf55a60f3b0a",
"sha256": "0c5b1517f591857dda4922f900d52118ce29645848c5a5a96ee16d18a0e276d2"
},
"downloads": -1,
"filename": "mashlib-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "dfaff7d153d3436548ccbf55a60f3b0a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 14384,
"upload_time": "2024-11-26T23:52:23",
"upload_time_iso_8601": "2024-11-26T23:52:23.126585Z",
"url": "https://files.pythonhosted.org/packages/22/4d/e1f83dc023b87e174bd5dcddbcb2476ae388dcbe5ed9d68530a5e718cc83/mashlib-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-26 23:52:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "moonshinelabs-ai",
"github_project": "mash",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mashlib"
}