mat-clustering


Namemat-clustering JSON
Version 0.1rc1 PyPI version JSON
download
home_pagehttps://github.com/mat-analysis/mat-clustering
SummaryClustering Methods for Multiple Aspect Trajectory Data Mining
upload_time2024-10-02 03:44:34
maintainerNone
docs_urlNone
authorYuri Nassar
requires_python<3.10
licenseGPL Version 3 or superior (see LICENSE file)
keywords data-science machine-learning data-mining trajectory multiple-trajectory clustering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MAT-clustering: Clustering Methods for Multiple Aspect Trajectory Data Mining \[MAT-Tools Framework\]
---

\[[Publication](#)\] \[[Bibtex](https://github.com/mat-analysis/mat-tools/blob/main/references/mat-tools.bib)\] \[[GitHub](https://github.com/mat-analysis/mat-clustering)\] \[[PyPi](https://pypi.org/project/mat-clustering/)\]

The present application offers a tool, to support the user in the data mining task of multiple aspect trajectories, specifically for clustering its complex data. It integrates into a unique platform the fragmented approaches available for multiple aspects trajectories and in general for multidimensional sequence classification into a unique web-based and python library system. 

Created on Apr, 2024
Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)

### Main Modules

- Core Classes:
    1. **TrajectoryClustering** - Base class for trajectory clustering
    2. **HSTrajectoryClustering** - Hyperparameter search model for trajectory clustering
    3. **SimilarityClustering** - Similarity-based clustering for trajectory data

- Similarity-based clustering methods:
    1. **TSAgglomerative** - MAT Hierarchical Agglomerative Clustering
    2. **TSBirch** - MAT BIRCH Clustering
    3. **TSDBSCAN** - MAT DBSCAN Clustering    
    4. **TSKMeans** - MAT K-Means Clustering
    5. **TSKMedoids** - MAT K-Medoids Clustering
    6. **TSpectral** - MAT Spectral Clustering
    
- CoClustering clustering methods: **Under Development**

- Hierarchical clustering methods: **Under Development**

### Installation

Install directly from PyPi repository, or, download from github. (python >= 3.7 required)

```bash
    pip install mat-clustering
```

### Citing

If you use `mat-clustering` please cite the following paper:

 - Portela, T. T.; Machado, V. L.; Renso, C. Unified Approach to Trajectory Data Mining and Multi-Aspect Trajectory Analysis with MAT-Tools Framework. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 39. , 2024, Florianópolis/SC. \[[Bibtex](https://github.com/mat-analysis/mat-tools/blob/main/references/mat-tools.bib)\]

### Collaborate with us

Any contribution is welcome. This is an active project and if you would like to include your algorithm in `matclustering`, feel free to fork the project, open an issue and contact us.

Feel free to contribute in any form, such as scientific publications referencing `matclustering`, teaching material and workshop videos.

### Related packages

This package is part of _MAT-Tools Framework_ for Multiple Aspect Trajectory Data Mining, check the guide project:

- **[mat-tools](https://github.com/mat-analysis/mat-tools)**: Reference guide for MAT-Tools Framework repositories


### Change Log

This is a package under construction, see [CHANGELOG.md](https://github.com/mat-analysis/mat-clustering/blob/main/CHANGELOG.md)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mat-analysis/mat-clustering",
    "name": "mat-clustering",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.10",
    "maintainer_email": "Tarlis Tortelli Portela <tarlis@tarlis.com.br>, Yuri Santos <yuri.nassar@gmail.com>",
    "keywords": "data-science, machine-learning, data-mining, trajectory, multiple-trajectory, clustering",
    "author": "Yuri Nassar",
    "author_email": "Yuri Santos <yuri.nassar@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/fa/6e/6467a504bfb29fcfe324acbd9cfcfc6149bb61fe9959c2fadb04eb29e90d/mat_clustering-0.1rc1.tar.gz",
    "platform": null,
    "description": "# MAT-clustering: Clustering Methods for Multiple Aspect Trajectory Data Mining \\[MAT-Tools Framework\\]\n---\n\n\\[[Publication](#)\\] \\[[Bibtex](https://github.com/mat-analysis/mat-tools/blob/main/references/mat-tools.bib)\\] \\[[GitHub](https://github.com/mat-analysis/mat-clustering)\\] \\[[PyPi](https://pypi.org/project/mat-clustering/)\\]\n\nThe present application offers a tool, to support the user in the data mining task of multiple aspect trajectories, specifically for clustering its complex data. It integrates into a unique platform the fragmented approaches available for multiple aspects trajectories and in general for multidimensional sequence classification into a unique web-based and python library system. \n\nCreated on Apr, 2024\nCopyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)\n\n### Main Modules\n\n- Core Classes:\n    1. **TrajectoryClustering** - Base class for trajectory clustering\n    2. **HSTrajectoryClustering** - Hyperparameter search model for trajectory clustering\n    3. **SimilarityClustering** - Similarity-based clustering for trajectory data\n\n- Similarity-based clustering methods:\n    1. **TSAgglomerative** - MAT Hierarchical Agglomerative Clustering\n    2. **TSBirch** - MAT BIRCH Clustering\n    3. **TSDBSCAN** - MAT DBSCAN Clustering    \n    4. **TSKMeans** - MAT K-Means Clustering\n    5. **TSKMedoids** - MAT K-Medoids Clustering\n    6. **TSpectral** - MAT Spectral Clustering\n    \n- CoClustering clustering methods: **Under Development**\n\n- Hierarchical clustering methods: **Under Development**\n\n### Installation\n\nInstall directly from PyPi repository, or, download from github. (python >= 3.7 required)\n\n```bash\n    pip install mat-clustering\n```\n\n### Citing\n\nIf you use `mat-clustering` please cite the following paper:\n\n - Portela, T. T.; Machado, V. L.; Renso, C. Unified Approach to Trajectory Data Mining and Multi-Aspect Trajectory Analysis with MAT-Tools Framework. In: SIMP\u00d3SIO BRASILEIRO DE BANCO DE DADOS (SBBD), 39. , 2024, Florian\u00f3polis/SC. \\[[Bibtex](https://github.com/mat-analysis/mat-tools/blob/main/references/mat-tools.bib)\\]\n\n### Collaborate with us\n\nAny contribution is welcome. This is an active project and if you would like to include your algorithm in `matclustering`, feel free to fork the project, open an issue and contact us.\n\nFeel free to contribute in any form, such as scientific publications referencing `matclustering`, teaching material and workshop videos.\n\n### Related packages\n\nThis package is part of _MAT-Tools Framework_ for Multiple Aspect Trajectory Data Mining, check the guide project:\n\n- **[mat-tools](https://github.com/mat-analysis/mat-tools)**: Reference guide for MAT-Tools Framework repositories\n\n\n### Change Log\n\nThis is a package under construction, see [CHANGELOG.md](https://github.com/mat-analysis/mat-clustering/blob/main/CHANGELOG.md)\n",
    "bugtrack_url": null,
    "license": "GPL Version 3 or superior (see LICENSE file)",
    "summary": "Clustering Methods for Multiple Aspect Trajectory Data Mining",
    "version": "0.1rc1",
    "project_urls": {
        "Bug Tracker": "https://github.com/mat-analysis/mat-clustering/issues",
        "Documentation": "https://mat-analysis.github.io/mat-tools/mat-clustering/index.html",
        "Download": "https://pypi.org/project/mat-clustering/#files",
        "Homepage": "https://github.com/mat-analysis/mat-clustering",
        "Repository": "https://github.com/mat-analysis/mat-clustering"
    },
    "split_keywords": [
        "data-science",
        " machine-learning",
        " data-mining",
        " trajectory",
        " multiple-trajectory",
        " clustering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d03e759890f7d6543343681d126cb1ae386f528255a6749c026c55e9e2dc6660",
                "md5": "77fb3388e108f247437d49a45fd5ba52",
                "sha256": "b32c05758ff6ee7cca684f3e40691300b80280355d2fa71321e31d6e8e5cfda5"
            },
            "downloads": -1,
            "filename": "mat_clustering-0.1rc1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "77fb3388e108f247437d49a45fd5ba52",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.10",
            "size": 107180,
            "upload_time": "2024-10-02T03:44:29",
            "upload_time_iso_8601": "2024-10-02T03:44:29.623979Z",
            "url": "https://files.pythonhosted.org/packages/d0/3e/759890f7d6543343681d126cb1ae386f528255a6749c026c55e9e2dc6660/mat_clustering-0.1rc1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa6e6467a504bfb29fcfe324acbd9cfcfc6149bb61fe9959c2fadb04eb29e90d",
                "md5": "6eca1ca9aa6af51800f06593df928a90",
                "sha256": "1d4e5a8b08b8c2130887e5ec7f86d378352cf8da818a76164753c040f086cc7e"
            },
            "downloads": -1,
            "filename": "mat_clustering-0.1rc1.tar.gz",
            "has_sig": false,
            "md5_digest": "6eca1ca9aa6af51800f06593df928a90",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.10",
            "size": 3141684,
            "upload_time": "2024-10-02T03:44:34",
            "upload_time_iso_8601": "2024-10-02T03:44:34.591714Z",
            "url": "https://files.pythonhosted.org/packages/fa/6e/6467a504bfb29fcfe324acbd9cfcfc6149bb61fe9959c2fadb04eb29e90d/mat_clustering-0.1rc1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-02 03:44:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mat-analysis",
    "github_project": "mat-clustering",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "mat-clustering"
}
        
Elapsed time: 0.98103s