Name | matcher-py JSON |
Version |
0.5.8
JSON |
| download |
home_page | https://github.com/Lips7/Matcher |
Summary | A high-performance matcher designed to solve LOGICAL and TEXT VARIATIONS problems in word matching, implemented in Rust. |
upload_time | 2025-08-23 00:37:54 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Matcher Rust Implementation with PyO3 Binding
A high-performance matcher designed to solve **LOGICAL** and **TEXT VARIATIONS** problems in word matching, implemented in Rust.
For detailed implementation, see the [Design Document](../DESIGN.md).
## Features
- **Multiple Matching Methods**:
- Simple Word Matching
- Regex-Based Matching
- Similarity-Based Matching
- **Text Normalization**:
- **Fanjian**: Simplify traditional Chinese characters to simplified ones.
Example: `蟲艸` -> `虫艹`
- **Delete**: Remove specific characters.
Example: `*Fu&*iii&^%%*&kkkk` -> `Fuiiikkkk`
- **Normalize**: Normalize special characters to identifiable characters.
Example: `𝜢𝕰𝕃𝙻𝝧 𝙒ⓞᵣℒ𝒟!` -> `hello world!`
- **PinYin**: Convert Chinese characters to Pinyin for fuzzy matching.
Example: `西安` -> ` xi an `, matches `洗按` -> ` xi an `, but not `先` -> ` xian `
- **PinYinChar**: Convert Chinese characters to Pinyin.
Example: `西安` -> `xian`, matches `洗按` and `先` -> `xian`
- **AND OR NOT Word Matching**:
- Takes into account the number of repetitions of words.
- Example: `hello&world` matches `hello world` and `world,hello`
- Example: `无&法&无&天` matches `无无法天` (because `无` is repeated twice), but not `无法天`
- Example: `hello~helloo~hhello` matches `hello` but not `helloo` and `hhello`
- **Customizable Exemption Lists**: Exclude specific words from matching.
- **Efficient Handling of Large Word Lists**: Optimized for performance.
## Installation
### Use pip
```shell
pip install matcher_py
```
### Install pre-built binary
Visit the [release page](https://github.com/Lips7/Matcher/releases) to download the pre-built binary.
## Usage
All relevant types are defined in [extension_types.py](./python/matcher_py/extension_types.py).
### Explanation of the configuration
* `Matcher`'s configuration is defined by the `MatchTableMap = Dict[int, List[MatchTable]]` type, the key of `MatchTableMap` is called `match_id`, **for each `match_id`, the `table_id` inside is required to be unique**.
* `SimpleMatcher`'s configuration is defined by the `SimpleTable = Dict[ProcessType, Dict[int, str]]` type, the value `Dict[int, str]`'s key is called `word_id`, **`word_id` is required to be globally unique**.
#### MatchTable
* `table_id`: The unique ID of the match table.
* `match_table_type`: The type of the match table.
* `word_list`: The word list of the match table.
* `exemption_process_type`: The type of the exemption simple match.
* `exemption_word_list`: The exemption word list of the match table.
For each match table, word matching is performed over the `word_list`, and exemption word matching is performed over the `exemption_word_list`. If the exemption word matching result is True, the word matching result will be False.
#### MatchTableType
* `Simple`: Supports simple multiple patterns matching with text normalization defined by `process_type`.
* It can handle combination patterns and repeated times sensitive matching, delimited by `&` and `~`, such as `hello&world&hello` will match `hellohelloworld` and `worldhellohello`, but not `helloworld` due to the repeated times of `hello`.
* `Regex`: Supports regex patterns matching.
* `SimilarChar`: Supports similar character matching using regex.
* `["hello,hallo,hollo,hi", "word,world,wrd,🌍", "!,?,~"]` will match `helloworld!`, `hollowrd?`, `hi🌍~` ··· any combinations of the words split by `,` in the list.
* `Acrostic`: Supports acrostic matching using regex **(currently only supports Chinese and simple English sentences)**.
* `["h,e,l,l,o", "你,好"]` will match `hope, endures, love, lasts, onward.` and `你的笑容温暖, 好心情常伴。`.
* `Regex`: Supports regex matching.
* `["h[aeiou]llo", "w[aeiou]rd"]` will match `hello`, `world`, `hillo`, `wurld` ··· any text that matches the regex in the list.
* `Similar`: Supports similar text matching based on distance and threshold.
* `Levenshtein`: Supports similar text matching based on Levenshtein distance.
#### ProcessType
* `None`: No transformation.
* `Fanjian`: Traditional Chinese to simplified Chinese transformation. Based on [FANJIAN](../matcher_rs/process_map/FANJIAN.txt).
* `妳好` -> `你好`
* `現⾝` -> `现身`
* `Delete`: Delete all punctuation, special characters and white spaces. Based on [TEXT_DELETE](../matcher_rs/process_map/TEXT-DELETE.txt) and `WHITE_SPACE`.
* `hello, world!` -> `helloworld`
* `《你∷好》` -> `你好`
* `Normalize`: Normalize all English character variations and number variations to basic characters. Based on [NORM](../matcher_rs//process_map/NORM.txt) and [NUM_NORM](../matcher_rs//process_map/NUM-NORM.txt).
* `ℋЀ⒈㈠Õ` -> `he11o`
* `⒈Ƨ㊂` -> `123`
* `PinYin`: Convert all unicode Chinese characters to pinyin with boundaries. Based on [PINYIN](../matcher_rs/process_map/PINYIN.txt).
* `你好` -> ` ni hao `
* `西安` -> ` xi an `
* `PinYinChar`: Convert all unicode Chinese characters to pinyin without boundaries. Based on [PINYIN](../matcher_rs/process_map/PINYIN.txt).
* `你好` -> `nihao`
* `西安` -> `xian`
You can combine these transformations as needed. Pre-defined combinations like `DeleteNormalize` and `FanjianDeleteNormalize` are provided for convenience.
Avoid combining `PinYin` and `PinYinChar` due to that `PinYin` is a more limited version of `PinYinChar`, in some cases like `xian`, can be treat as two words `xi` and `an`, or only one word `xian`.
### Text Process Usage
Here’s an example of how to use the `reduce_text_process` and `text_process` functions:
```python
from matcher_py import reduce_text_process, text_process
from matcher_py.extension_types import ProcessType
print(reduce_text_process(ProcessType.MatchDeleteNormalize, "hello, world!"))
print(text_process(ProcessType.MatchDelete, "hello, world!"))
```
### Matcher Basic Usage
Here’s an example of how to use the `Matcher`:
```python
import json
from matcher_py import Matcher
from matcher_py.extension_types import MatchTable, MatchTableType, ProcessType, RegexMatchType, SimMatchType
matcher = Matcher(
json.dumps({
1: [
MatchTable(
table_id=1,
match_table_type=MatchTableType.Simple(process_type = ProcessType.MatchFanjianDeleteNormalize),
word_list=["hello", "world"],
exemption_process_type=ProcessType.MatchNone,
exemption_word_list=["word"],
),
MatchTable(
table_id=2,
match_table_type=MatchTableType.Regex(
process_type = ProcessType.MatchFanjianDeleteNormalize,
regex_match_type=RegexMatchType.Regex
),
word_list=["h[aeiou]llo"],
exemption_process_type=ProcessType.MatchNone,
exemption_word_list=[],
)
],
2: [
MatchTable(
table_id=3,
match_table_type=MatchTableType.Similar(
process_type = ProcessType.MatchFanjianDeleteNormalize,
sim_match_type=SimMatchType.MatchLevenshtein,
threshold=0.5
),
word_list=["halxo"],
exemption_process_type=ProcessType.MatchNone,
exemption_word_list=[],
)
]
}).encode()
)
# Check if a text matches
assert matcher.is_match("hello")
assert not matcher.is_match("word")
# Perform process as a list
result = matcher.process("hello")
assert result == [{'match_id': 1,
'table_id': 2,
'word_id': 0,
'word': 'h[aeiou]llo',
'similarity': 1.0},
{'match_id': 1,
'table_id': 1,
'word_id': 0,
'word': 'hello',
'similarity': 1.0},
{'match_id': 2,
'table_id': 3,
'word_id': 0,
'word': 'halxo',
'similarity': 0.6}]
# Perform word matching as a dict
assert matcher.word_match(r"hello, world")[1] == [{'match_id': 1,
'table_id': 2,
'word_id': 0,
'word': 'h[aeiou]llo',
'similarity': 1.0},
{'match_id': 1,
'table_id': 1,
'word_id': 0,
'word': 'hello',
'similarity': 1.0},
{'match_id': 1,
'table_id': 1,
'word_id': 1,
'word': 'world',
'similarity': 1.0}]
# Perform word matching as a string
result = matcher.word_match_as_string("hello")
assert result == """{"2":[{"match_id":2,"table_id":3,"word_id":0,"word":"halxo","similarity":0.6}],"1":[{"match_id":1,"table_id":2,"word_id":0,"word":"h[aeiou]llo","similarity":1.0},{"match_id":1,"table_id":1,"word_id":0,"word":"hello","similarity":1.0}]}"""
```
### Simple Matcher Basic Usage
Here’s an example of how to use the `SimpleMatcher`:
```python
import json
from matcher_py import SimpleMatcher
from matcher_py.extension_types import ProcessType
simple_matcher = SimpleMatcher(
json.dumps(
{
ProcessType.MatchNone: {
1: "hello&world",
2: "word&word~hello"
},
ProcessType.MatchDelete: {
3: "hallo"
}
}
).encode()
)
# Check if a text matches
assert simple_matcher.is_match("hello^&!#*#&!^#*()world")
# Perform simple processing
result = simple_matcher.process("hello,world,word,word,hallo")
assert result == [{'word_id': 1, 'word': 'hello&world'}, {'word_id': 3, 'word': 'hallo'}]
```
## Contributing
Contributions to `matcher_py` are welcome! If you find a bug or have a feature request, please open an issue on the [GitHub repository](https://github.com/Lips7/Matcher). If you would like to contribute code, please fork the repository and submit a pull request.
## License
`matcher_py` is licensed under the MIT OR Apache-2.0 license.
## More Information
For more details, visit the [GitHub repository](https://github.com/Lips7/Matcher).
Raw data
{
"_id": null,
"home_page": "https://github.com/Lips7/Matcher",
"name": "matcher-py",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Foster Guo <f975793771@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/8d/04/f7cd3b110e2385eb4aea5b268750d6d2fd964e012ca9b40b564d165385c1/matcher_py-0.5.8.tar.gz",
"platform": null,
"description": "# Matcher Rust Implementation with PyO3 Binding\n\nA high-performance matcher designed to solve **LOGICAL** and **TEXT VARIATIONS** problems in word matching, implemented in Rust.\n\nFor detailed implementation, see the [Design Document](../DESIGN.md).\n\n## Features\n\n- **Multiple Matching Methods**:\n - Simple Word Matching\n - Regex-Based Matching\n - Similarity-Based Matching\n- **Text Normalization**:\n - **Fanjian**: Simplify traditional Chinese characters to simplified ones.\n Example: `\u87f2\u8278` -> `\u866b\u8279`\n - **Delete**: Remove specific characters.\n Example: `*Fu&*iii&^%%*&kkkk` -> `Fuiiikkkk`\n - **Normalize**: Normalize special characters to identifiable characters.\n Example: `\ud835\udf22\ud835\udd70\ud835\udd43\ud835\ude7b\ud835\udf67 \ud835\ude52\u24de\u1d63\u2112\ud835\udc9f!` -> `hello world!`\n - **PinYin**: Convert Chinese characters to Pinyin for fuzzy matching.\n Example: `\u897f\u5b89` -> ` xi an `, matches `\u6d17\u6309` -> ` xi an `, but not `\u5148` -> ` xian `\n - **PinYinChar**: Convert Chinese characters to Pinyin.\n Example: `\u897f\u5b89` -> `xian`, matches `\u6d17\u6309` and `\u5148` -> `xian`\n- **AND OR NOT Word Matching**:\n - Takes into account the number of repetitions of words.\n - Example: `hello&world` matches `hello world` and `world,hello`\n - Example: `\u65e0&\u6cd5&\u65e0&\u5929` matches `\u65e0\u65e0\u6cd5\u5929` (because `\u65e0` is repeated twice), but not `\u65e0\u6cd5\u5929`\n - Example: `hello~helloo~hhello` matches `hello` but not `helloo` and `hhello`\n- **Customizable Exemption Lists**: Exclude specific words from matching.\n- **Efficient Handling of Large Word Lists**: Optimized for performance.\n\n## Installation\n\n### Use pip\n\n```shell\npip install matcher_py\n```\n\n### Install pre-built binary\n\nVisit the [release page](https://github.com/Lips7/Matcher/releases) to download the pre-built binary.\n\n## Usage\n\nAll relevant types are defined in [extension_types.py](./python/matcher_py/extension_types.py).\n\n### Explanation of the configuration\n\n* `Matcher`'s configuration is defined by the `MatchTableMap = Dict[int, List[MatchTable]]` type, the key of `MatchTableMap` is called `match_id`, **for each `match_id`, the `table_id` inside is required to be unique**.\n* `SimpleMatcher`'s configuration is defined by the `SimpleTable = Dict[ProcessType, Dict[int, str]]` type, the value `Dict[int, str]`'s key is called `word_id`, **`word_id` is required to be globally unique**.\n\n#### MatchTable\n\n* `table_id`: The unique ID of the match table.\n* `match_table_type`: The type of the match table.\n* `word_list`: The word list of the match table.\n* `exemption_process_type`: The type of the exemption simple match.\n* `exemption_word_list`: The exemption word list of the match table.\n\nFor each match table, word matching is performed over the `word_list`, and exemption word matching is performed over the `exemption_word_list`. If the exemption word matching result is True, the word matching result will be False.\n\n#### MatchTableType\n\n* `Simple`: Supports simple multiple patterns matching with text normalization defined by `process_type`.\n * It can handle combination patterns and repeated times sensitive matching, delimited by `&` and `~`, such as `hello&world&hello` will match `hellohelloworld` and `worldhellohello`, but not `helloworld` due to the repeated times of `hello`.\n* `Regex`: Supports regex patterns matching.\n * `SimilarChar`: Supports similar character matching using regex.\n * `[\"hello,hallo,hollo,hi\", \"word,world,wrd,\ud83c\udf0d\", \"!,?,~\"]` will match `helloworld!`, `hollowrd?`, `hi\ud83c\udf0d~` \u00b7\u00b7\u00b7 any combinations of the words split by `,` in the list.\n * `Acrostic`: Supports acrostic matching using regex **(currently only supports Chinese and simple English sentences)**.\n * `[\"h,e,l,l,o\", \"\u4f60,\u597d\"]` will match `hope, endures, love, lasts, onward.` and `\u4f60\u7684\u7b11\u5bb9\u6e29\u6696, \u597d\u5fc3\u60c5\u5e38\u4f34\u3002`.\n * `Regex`: Supports regex matching.\n * `[\"h[aeiou]llo\", \"w[aeiou]rd\"]` will match `hello`, `world`, `hillo`, `wurld` \u00b7\u00b7\u00b7 any text that matches the regex in the list.\n* `Similar`: Supports similar text matching based on distance and threshold.\n * `Levenshtein`: Supports similar text matching based on Levenshtein distance.\n\n#### ProcessType\n\n* `None`: No transformation.\n* `Fanjian`: Traditional Chinese to simplified Chinese transformation. Based on [FANJIAN](../matcher_rs/process_map/FANJIAN.txt).\n * `\u59b3\u597d` -> `\u4f60\u597d`\n * `\u73fe\u2f9d` -> `\u73b0\u8eab`\n* `Delete`: Delete all punctuation, special characters and white spaces. Based on [TEXT_DELETE](../matcher_rs/process_map/TEXT-DELETE.txt) and `WHITE_SPACE`.\n * `hello, world!` -> `helloworld`\n * `\u300a\u4f60\u2237\u597d\u300b` -> `\u4f60\u597d`\n* `Normalize`: Normalize all English character variations and number variations to basic characters. Based on [NORM](../matcher_rs//process_map/NORM.txt) and [NUM_NORM](../matcher_rs//process_map/NUM-NORM.txt).\n * `\u210b\u0400\u2488\u3220\u00d5` -> `he11o`\n * `\u2488\u01a7\u3282` -> `123`\n* `PinYin`: Convert all unicode Chinese characters to pinyin with boundaries. Based on [PINYIN](../matcher_rs/process_map/PINYIN.txt).\n * `\u4f60\u597d` -> ` ni hao `\n * `\u897f\u5b89` -> ` xi an `\n* `PinYinChar`: Convert all unicode Chinese characters to pinyin without boundaries. Based on [PINYIN](../matcher_rs/process_map/PINYIN.txt).\n * `\u4f60\u597d` -> `nihao`\n * `\u897f\u5b89` -> `xian`\n\nYou can combine these transformations as needed. Pre-defined combinations like `DeleteNormalize` and `FanjianDeleteNormalize` are provided for convenience.\n\nAvoid combining `PinYin` and `PinYinChar` due to that `PinYin` is a more limited version of `PinYinChar`, in some cases like `xian`, can be treat as two words `xi` and `an`, or only one word `xian`.\n\n### Text Process Usage\n\nHere\u2019s an example of how to use the `reduce_text_process` and `text_process` functions:\n\n```python\nfrom matcher_py import reduce_text_process, text_process\nfrom matcher_py.extension_types import ProcessType\n\nprint(reduce_text_process(ProcessType.MatchDeleteNormalize, \"hello, world!\"))\nprint(text_process(ProcessType.MatchDelete, \"hello, world!\"))\n```\n\n### Matcher Basic Usage\n\nHere\u2019s an example of how to use the `Matcher`:\n\n```python\nimport json\n\nfrom matcher_py import Matcher\nfrom matcher_py.extension_types import MatchTable, MatchTableType, ProcessType, RegexMatchType, SimMatchType\n\nmatcher = Matcher(\n json.dumps({\n 1: [\n MatchTable(\n table_id=1,\n match_table_type=MatchTableType.Simple(process_type = ProcessType.MatchFanjianDeleteNormalize),\n word_list=[\"hello\", \"world\"],\n exemption_process_type=ProcessType.MatchNone,\n exemption_word_list=[\"word\"],\n ),\n MatchTable(\n table_id=2,\n match_table_type=MatchTableType.Regex(\n process_type = ProcessType.MatchFanjianDeleteNormalize,\n regex_match_type=RegexMatchType.Regex\n ),\n word_list=[\"h[aeiou]llo\"],\n exemption_process_type=ProcessType.MatchNone,\n exemption_word_list=[],\n )\n ],\n 2: [\n MatchTable(\n table_id=3,\n match_table_type=MatchTableType.Similar(\n process_type = ProcessType.MatchFanjianDeleteNormalize,\n sim_match_type=SimMatchType.MatchLevenshtein,\n threshold=0.5\n ),\n word_list=[\"halxo\"],\n exemption_process_type=ProcessType.MatchNone,\n exemption_word_list=[],\n )\n ]\n }).encode()\n)\n# Check if a text matches\nassert matcher.is_match(\"hello\")\nassert not matcher.is_match(\"word\")\n# Perform process as a list\nresult = matcher.process(\"hello\")\nassert result == [{'match_id': 1,\n 'table_id': 2,\n 'word_id': 0,\n 'word': 'h[aeiou]llo',\n 'similarity': 1.0},\n {'match_id': 1,\n 'table_id': 1,\n 'word_id': 0,\n 'word': 'hello',\n 'similarity': 1.0},\n {'match_id': 2,\n 'table_id': 3,\n 'word_id': 0,\n 'word': 'halxo',\n 'similarity': 0.6}]\n# Perform word matching as a dict\nassert matcher.word_match(r\"hello, world\")[1] == [{'match_id': 1,\n 'table_id': 2,\n 'word_id': 0,\n 'word': 'h[aeiou]llo',\n 'similarity': 1.0},\n {'match_id': 1,\n 'table_id': 1,\n 'word_id': 0,\n 'word': 'hello',\n 'similarity': 1.0},\n {'match_id': 1,\n 'table_id': 1,\n 'word_id': 1,\n 'word': 'world',\n 'similarity': 1.0}]\n# Perform word matching as a string\nresult = matcher.word_match_as_string(\"hello\")\nassert result == \"\"\"{\"2\":[{\"match_id\":2,\"table_id\":3,\"word_id\":0,\"word\":\"halxo\",\"similarity\":0.6}],\"1\":[{\"match_id\":1,\"table_id\":2,\"word_id\":0,\"word\":\"h[aeiou]llo\",\"similarity\":1.0},{\"match_id\":1,\"table_id\":1,\"word_id\":0,\"word\":\"hello\",\"similarity\":1.0}]}\"\"\"\n```\n\n### Simple Matcher Basic Usage\n\nHere\u2019s an example of how to use the `SimpleMatcher`:\n\n```python\nimport json\n\nfrom matcher_py import SimpleMatcher\nfrom matcher_py.extension_types import ProcessType\n\nsimple_matcher = SimpleMatcher(\n json.dumps(\n {\n ProcessType.MatchNone: {\n 1: \"hello&world\",\n 2: \"word&word~hello\"\n },\n ProcessType.MatchDelete: {\n 3: \"hallo\"\n }\n }\n ).encode()\n)\n# Check if a text matches\nassert simple_matcher.is_match(\"hello^&!#*#&!^#*()world\")\n# Perform simple processing\nresult = simple_matcher.process(\"hello,world,word,word,hallo\")\nassert result == [{'word_id': 1, 'word': 'hello&world'}, {'word_id': 3, 'word': 'hallo'}]\n```\n\n## Contributing\n\nContributions to `matcher_py` are welcome! If you find a bug or have a feature request, please open an issue on the [GitHub repository](https://github.com/Lips7/Matcher). If you would like to contribute code, please fork the repository and submit a pull request.\n\n## License\n\n`matcher_py` is licensed under the MIT OR Apache-2.0 license.\n\n## More Information\n\nFor more details, visit the [GitHub repository](https://github.com/Lips7/Matcher).\n",
"bugtrack_url": null,
"license": null,
"summary": "A high-performance matcher designed to solve LOGICAL and TEXT VARIATIONS problems in word matching, implemented in Rust.",
"version": "0.5.8",
"project_urls": {
"Homepage": "https://github.com/Lips7/Matcher",
"changelog": "https://github.com/Lips7/Matcher/blob/master/CHANGELOG.md",
"repository": "https://github.com/Lips7/Matcher"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "57ba11d600326ca15cb185858dfb1a88d77864e5f3a4dae18fb973bbabe5ae23",
"md5": "115bc1d1aef8f66f0f4a07f7b1caa261",
"sha256": "019535bc7c8807de7c658822065f9eea6b22e2fd2c11ab8e61ccddff20a0e226"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "115bc1d1aef8f66f0f4a07f7b1caa261",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1650151,
"upload_time": "2025-08-23T00:37:07",
"upload_time_iso_8601": "2025-08-23T00:37:07.814665Z",
"url": "https://files.pythonhosted.org/packages/57/ba/11d600326ca15cb185858dfb1a88d77864e5f3a4dae18fb973bbabe5ae23/matcher_py-0.5.8-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c416fda07741a376d2de73328ec83605da65859776fb0c214659fb1076408da3",
"md5": "28ff1aec2f70fbf94ce2a1ee3ab91e2a",
"sha256": "1888ca39b3bb184bd8533b7bdf72f8aca5bc14df14276b678254383b8d0a0fd6"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "28ff1aec2f70fbf94ce2a1ee3ab91e2a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1791867,
"upload_time": "2025-08-23T00:37:09",
"upload_time_iso_8601": "2025-08-23T00:37:09.560695Z",
"url": "https://files.pythonhosted.org/packages/c4/16/fda07741a376d2de73328ec83605da65859776fb0c214659fb1076408da3/matcher_py-0.5.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7717b381dc6fd72cd828a9ea27ccdc54b4ac163f0f991792496615584f19a4ca",
"md5": "2a3396a5777b026aaeebd5f3b10dc47e",
"sha256": "c9e26d32fd5e3389a9626b6e2958e8f134e443d7874069117c8398d1ed2977f0"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "2a3396a5777b026aaeebd5f3b10dc47e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1845262,
"upload_time": "2025-08-23T00:37:10",
"upload_time_iso_8601": "2025-08-23T00:37:10.984870Z",
"url": "https://files.pythonhosted.org/packages/77/17/b381dc6fd72cd828a9ea27ccdc54b4ac163f0f991792496615584f19a4ca/matcher_py-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c1b7a3ad5ccf6440072dcc991097424c4799a8ed74f13d7e1b6c1ad3b388da9b",
"md5": "2dc73ba62382c2ac39fb450cb0c47a47",
"sha256": "aeef52a5184b890237e0138b550331214b901705753ef30cae94a66881de7ad7"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp310-cp310-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "2dc73ba62382c2ac39fb450cb0c47a47",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 2002352,
"upload_time": "2025-08-23T00:37:12",
"upload_time_iso_8601": "2025-08-23T00:37:12.589447Z",
"url": "https://files.pythonhosted.org/packages/c1/b7/a3ad5ccf6440072dcc991097424c4799a8ed74f13d7e1b6c1ad3b388da9b/matcher_py-0.5.8-cp310-cp310-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f29181b73fb1c2cc1be7e3af6a87178f3fa89fe0c33a26d8ea94aa32d3a10040",
"md5": "22ccb14bf47d3e736ef17eb977bbbd7a",
"sha256": "9ab926d30f5570cf0903d18ff6474b3a7eed6b67765767343e1e2cd923056535"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp310-cp310-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "22ccb14bf47d3e736ef17eb977bbbd7a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 2025713,
"upload_time": "2025-08-23T00:37:13",
"upload_time_iso_8601": "2025-08-23T00:37:13.956073Z",
"url": "https://files.pythonhosted.org/packages/f2/91/81b73fb1c2cc1be7e3af6a87178f3fa89fe0c33a26d8ea94aa32d3a10040/matcher_py-0.5.8-cp310-cp310-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "15ac122fe8321ce797161eb79c85f910ebd88a3f26cdec301b9314ebe33eb696",
"md5": "544054b2089cbecaf54c495353a523c1",
"sha256": "9bead819fdb8f527ea3960dae817bd47f6fcd9f677289dc5c605e153d5e47aea"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "544054b2089cbecaf54c495353a523c1",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1756443,
"upload_time": "2025-08-23T00:37:15",
"upload_time_iso_8601": "2025-08-23T00:37:15.208614Z",
"url": "https://files.pythonhosted.org/packages/15/ac/122fe8321ce797161eb79c85f910ebd88a3f26cdec301b9314ebe33eb696/matcher_py-0.5.8-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5b099bdf2f5939ae0ec22e250b88c7e16aad9e340e1ae8785c52e33f8b58f692",
"md5": "4d974e94f858fc361d8e89e057d4866e",
"sha256": "3379baea9aef222ad216fe3ecd647cea9cd3175cb127230e4a76833978108ac6"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "4d974e94f858fc361d8e89e057d4866e",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1649873,
"upload_time": "2025-08-23T00:37:16",
"upload_time_iso_8601": "2025-08-23T00:37:16.349641Z",
"url": "https://files.pythonhosted.org/packages/5b/09/9bdf2f5939ae0ec22e250b88c7e16aad9e340e1ae8785c52e33f8b58f692/matcher_py-0.5.8-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ba1422c4d98d8e2cfd285d15d806033eddc43598b2b252b2ac9a52356c86ddc1",
"md5": "544261e1b39c5b8c626f534e32d1580c",
"sha256": "7f929a34a169e8ae9f55e8a9d8e7156da9af047132617cd9163500e2baeecebd"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "544261e1b39c5b8c626f534e32d1580c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1791567,
"upload_time": "2025-08-23T00:37:17",
"upload_time_iso_8601": "2025-08-23T00:37:17.681931Z",
"url": "https://files.pythonhosted.org/packages/ba/14/22c4d98d8e2cfd285d15d806033eddc43598b2b252b2ac9a52356c86ddc1/matcher_py-0.5.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f65dd5d0fb1b3194da6d2f44e5d88ec338adaed612de19414e5495afc921191f",
"md5": "0968b5ff7f46ae080483cdf340a1310d",
"sha256": "923e2d3eb0a8d5dcf30dae1195e44fac4a6f854180405bfc800ef129071c512e"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0968b5ff7f46ae080483cdf340a1310d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1844965,
"upload_time": "2025-08-23T00:37:19",
"upload_time_iso_8601": "2025-08-23T00:37:19.123710Z",
"url": "https://files.pythonhosted.org/packages/f6/5d/d5d0fb1b3194da6d2f44e5d88ec338adaed612de19414e5495afc921191f/matcher_py-0.5.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f22dcaac39fa9a2e1bc5ae09834298374c00d510a1df948d5da4cb7679afb0e6",
"md5": "43d3d6212b3381da2b0cbce3e1ab149e",
"sha256": "f48bc1c523394ca473452a998548a9afe29ce14356f372532d85e3ea4f851de2"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp311-cp311-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "43d3d6212b3381da2b0cbce3e1ab149e",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 2002023,
"upload_time": "2025-08-23T00:37:20",
"upload_time_iso_8601": "2025-08-23T00:37:20.405100Z",
"url": "https://files.pythonhosted.org/packages/f2/2d/caac39fa9a2e1bc5ae09834298374c00d510a1df948d5da4cb7679afb0e6/matcher_py-0.5.8-cp311-cp311-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c2bbe98ffe4710aeac538174097dc392d1007b56183d5a54c5fbfd05a0124f8e",
"md5": "54b83867dc9f93604a17ad568aa1e936",
"sha256": "75bc37f944000a2576fd043bde37bde454ec6ac104db6dcf27f39d4d646006a5"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp311-cp311-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "54b83867dc9f93604a17ad568aa1e936",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 2025756,
"upload_time": "2025-08-23T00:37:21",
"upload_time_iso_8601": "2025-08-23T00:37:21.820266Z",
"url": "https://files.pythonhosted.org/packages/c2/bb/e98ffe4710aeac538174097dc392d1007b56183d5a54c5fbfd05a0124f8e/matcher_py-0.5.8-cp311-cp311-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3cc9ad627a823dff5ed2d29f3e8438e84f21e36bd610aec80cf3663b5993ffba",
"md5": "dc9512f0344a142ea915dee78de05b79",
"sha256": "51a741cab23e4280890a3f05cf0b8ab361e399e80f1ea1f4ff9dc8ac3cc69746"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "dc9512f0344a142ea915dee78de05b79",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1756431,
"upload_time": "2025-08-23T00:37:22",
"upload_time_iso_8601": "2025-08-23T00:37:22.949604Z",
"url": "https://files.pythonhosted.org/packages/3c/c9/ad627a823dff5ed2d29f3e8438e84f21e36bd610aec80cf3663b5993ffba/matcher_py-0.5.8-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ffe5f13f03e9a4f3357e0c3337f65faef22c200b44ca18c943fbcfd0038439a1",
"md5": "dcb86312767af69750c580d07458adc0",
"sha256": "f20cbf6647d734949ca13a9e22360aead8a450e3ff9e93fcafe22694cd5d2295"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "dcb86312767af69750c580d07458adc0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1649147,
"upload_time": "2025-08-23T00:37:24",
"upload_time_iso_8601": "2025-08-23T00:37:24.385761Z",
"url": "https://files.pythonhosted.org/packages/ff/e5/f13f03e9a4f3357e0c3337f65faef22c200b44ca18c943fbcfd0038439a1/matcher_py-0.5.8-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d8d06dfbf775344bd4e5d6b8b717f6350effb16655dc8743505983daeec2d10f",
"md5": "087a6cdc0f96f3a998272abe9f6f05c6",
"sha256": "373b71535ec6d1a38d0a3b909811f54e23804353b5ef25d945676f38522cc7b3"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "087a6cdc0f96f3a998272abe9f6f05c6",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1789785,
"upload_time": "2025-08-23T00:37:25",
"upload_time_iso_8601": "2025-08-23T00:37:25.438202Z",
"url": "https://files.pythonhosted.org/packages/d8/d0/6dfbf775344bd4e5d6b8b717f6350effb16655dc8743505983daeec2d10f/matcher_py-0.5.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "445c29acf72b6299f35d8967129a04e5e33678a262530c31a456a0f0a37ad934",
"md5": "f0c94fb0c8d0baf4d0241b70082a9302",
"sha256": "38b3c736ea118a184b0c1d0506534f2e7ea93ecd2cad57094e8a16a0146c21f3"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f0c94fb0c8d0baf4d0241b70082a9302",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1844418,
"upload_time": "2025-08-23T00:37:26",
"upload_time_iso_8601": "2025-08-23T00:37:26.860798Z",
"url": "https://files.pythonhosted.org/packages/44/5c/29acf72b6299f35d8967129a04e5e33678a262530c31a456a0f0a37ad934/matcher_py-0.5.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "951978e211fc61ad43d468dec6096c6070d579278ebdc5a9aa02dcd25b5ff03f",
"md5": "37d3052c26078e022277b15deea29dd7",
"sha256": "de9ae4a0d67e4f447f705789e4f9f7a0f3e3c743e6a38c76851456c1d0ae5d47"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp312-cp312-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "37d3052c26078e022277b15deea29dd7",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 2000539,
"upload_time": "2025-08-23T00:37:28",
"upload_time_iso_8601": "2025-08-23T00:37:28.239872Z",
"url": "https://files.pythonhosted.org/packages/95/19/78e211fc61ad43d468dec6096c6070d579278ebdc5a9aa02dcd25b5ff03f/matcher_py-0.5.8-cp312-cp312-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d728cd5808c8606d8435dec0a67683152c680d5a05687fb86c2c4b1ea9906167",
"md5": "c756cee4daa412b2a5c17a250cb60cb6",
"sha256": "84137cbf72e22c92d6ff98e723429682cd0dae458d3d2a59f5f3e08ec060ecb7"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp312-cp312-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "c756cee4daa412b2a5c17a250cb60cb6",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 2025213,
"upload_time": "2025-08-23T00:37:29",
"upload_time_iso_8601": "2025-08-23T00:37:29.326203Z",
"url": "https://files.pythonhosted.org/packages/d7/28/cd5808c8606d8435dec0a67683152c680d5a05687fb86c2c4b1ea9906167/matcher_py-0.5.8-cp312-cp312-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "036683e3d6637b4fdded6a464eaf0c5fd907589d77276331e435ef9dfb5e1ff6",
"md5": "8a6a728cb531ecc74d10db29bfc48a38",
"sha256": "c1ffd3e089d0050f2592b01cefd790c9104826b83b80c447a951ab2ee50b711d"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "8a6a728cb531ecc74d10db29bfc48a38",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1756597,
"upload_time": "2025-08-23T00:37:30",
"upload_time_iso_8601": "2025-08-23T00:37:30.700024Z",
"url": "https://files.pythonhosted.org/packages/03/66/83e3d6637b4fdded6a464eaf0c5fd907589d77276331e435ef9dfb5e1ff6/matcher_py-0.5.8-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6e4cc7df5d25a9e4053548e27d7f2a58253660731bbf1af6e46d395b5d2f6da6",
"md5": "acc5f7831647b5348cb39244ab9cfe11",
"sha256": "766db24b7a0b26e6eacbe1f54d474939fa76319de7b63308a1fb45cd18962d69"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "acc5f7831647b5348cb39244ab9cfe11",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1649225,
"upload_time": "2025-08-23T00:37:31",
"upload_time_iso_8601": "2025-08-23T00:37:31.729828Z",
"url": "https://files.pythonhosted.org/packages/6e/4c/c7df5d25a9e4053548e27d7f2a58253660731bbf1af6e46d395b5d2f6da6/matcher_py-0.5.8-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "654ad133a778e8df64d4fe6f91f41a26ece732d5749c57c11b14f927fd95e3e8",
"md5": "4877af92d949ecb3f2b7aa163ba496ae",
"sha256": "a52beb5c42babda70cb42d0d8ea149687cfdaabd48dc9dc89ac5dcdb3fa1a198"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "4877af92d949ecb3f2b7aa163ba496ae",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1789205,
"upload_time": "2025-08-23T00:37:33",
"upload_time_iso_8601": "2025-08-23T00:37:33.180264Z",
"url": "https://files.pythonhosted.org/packages/65/4a/d133a778e8df64d4fe6f91f41a26ece732d5749c57c11b14f927fd95e3e8/matcher_py-0.5.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5d7e03b24f23591c55ce40e7a91374b8db148b7b23326e26fca04968b9995925",
"md5": "a638d74a8bf67d3d1ca558291f785560",
"sha256": "b48bb62466b18f9a033e1c6a435ba5b6c621c55955f536ea347573f408df5286"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a638d74a8bf67d3d1ca558291f785560",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1844413,
"upload_time": "2025-08-23T00:37:34",
"upload_time_iso_8601": "2025-08-23T00:37:34.622215Z",
"url": "https://files.pythonhosted.org/packages/5d/7e/03b24f23591c55ce40e7a91374b8db148b7b23326e26fca04968b9995925/matcher_py-0.5.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e99209626d0125a5a8264782d1d9b8cc5f71905ae745a3da35ae10303acfe802",
"md5": "29387a345ca386de506735b1d4db3e3f",
"sha256": "0c0c7768a73e8b82d13425944b9b5c6ab55359e7581e296adf42a77fc51586ce"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp313-cp313-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "29387a345ca386de506735b1d4db3e3f",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 2000271,
"upload_time": "2025-08-23T00:37:35",
"upload_time_iso_8601": "2025-08-23T00:37:35.819742Z",
"url": "https://files.pythonhosted.org/packages/e9/92/09626d0125a5a8264782d1d9b8cc5f71905ae745a3da35ae10303acfe802/matcher_py-0.5.8-cp313-cp313-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "756cfb0257173392c5785c1a1f7ebb1ac5d645d2a2a5e4238f9f248bd708a1ff",
"md5": "b1ca7266b2083d19741f538a296d5b06",
"sha256": "1edf6e9e04c07391b4f671a63e225b5bb59e42c7fa18ee7705da3ea2815e1483"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp313-cp313-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "b1ca7266b2083d19741f538a296d5b06",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 2025403,
"upload_time": "2025-08-23T00:37:36",
"upload_time_iso_8601": "2025-08-23T00:37:36.899525Z",
"url": "https://files.pythonhosted.org/packages/75/6c/fb0257173392c5785c1a1f7ebb1ac5d645d2a2a5e4238f9f248bd708a1ff/matcher_py-0.5.8-cp313-cp313-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fead889d3888a8392778e1ff9f9b03c80d498673a8fdc6b6b603825096d62cc8",
"md5": "e1583be81e6529db5f44014efa9a51b7",
"sha256": "5ebf4f0197a1aa483fca82dbad7655eb52102385ff3cc5dda45d27d757198f35"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "e1583be81e6529db5f44014efa9a51b7",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 1756751,
"upload_time": "2025-08-23T00:37:38",
"upload_time_iso_8601": "2025-08-23T00:37:38.267770Z",
"url": "https://files.pythonhosted.org/packages/fe/ad/889d3888a8392778e1ff9f9b03c80d498673a8fdc6b6b603825096d62cc8/matcher_py-0.5.8-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7f0127653a9170eddd0e1ac9f83ec1061d3ea0065cc5f1cab78083d55610548c",
"md5": "2690d9a38f21624cc86071f189462c03",
"sha256": "4219d036e401df4cf8f7a1dec5279dea2247cca375279e77c45127f076617cc7"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "2690d9a38f21624cc86071f189462c03",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1650251,
"upload_time": "2025-08-23T00:37:39",
"upload_time_iso_8601": "2025-08-23T00:37:39.293284Z",
"url": "https://files.pythonhosted.org/packages/7f/01/27653a9170eddd0e1ac9f83ec1061d3ea0065cc5f1cab78083d55610548c/matcher_py-0.5.8-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7e5f304e3bde66671133aed2adc96b1fcbed22652d38a2caa30a61156d1a852f",
"md5": "ee6133c9658afd2baad0ae8981709b10",
"sha256": "2d2dd66d34e8fa772ab07c616b79039d7aac1450eab9802076a727a800717bf8"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "ee6133c9658afd2baad0ae8981709b10",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1792209,
"upload_time": "2025-08-23T00:37:40",
"upload_time_iso_8601": "2025-08-23T00:37:40.640366Z",
"url": "https://files.pythonhosted.org/packages/7e/5f/304e3bde66671133aed2adc96b1fcbed22652d38a2caa30a61156d1a852f/matcher_py-0.5.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "867d405047a04080a2397055175097025a3556cf841b0dbcb9e7d03ce73e8744",
"md5": "968599129f992459fcf4de3bc62be540",
"sha256": "ebed732b2f8c4486e001c27da07dcc81820b36a6ae1c549fbfb5847f7fcae0e6"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "968599129f992459fcf4de3bc62be540",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1845773,
"upload_time": "2025-08-23T00:37:41",
"upload_time_iso_8601": "2025-08-23T00:37:41.900621Z",
"url": "https://files.pythonhosted.org/packages/86/7d/405047a04080a2397055175097025a3556cf841b0dbcb9e7d03ce73e8744/matcher_py-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e6b8af371ee94ab14b1f35f3d45ab5dd27d6bbb5ff30cede7610524fa8930e4e",
"md5": "84fb0b5c3965251fdf814b35d4a0c642",
"sha256": "076c32223c079cc2dc966e6d153eaf2fef79cbf5635ad62371f4bfa4bbfe7c95"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp38-cp38-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "84fb0b5c3965251fdf814b35d4a0c642",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 2002836,
"upload_time": "2025-08-23T00:37:42",
"upload_time_iso_8601": "2025-08-23T00:37:42.976336Z",
"url": "https://files.pythonhosted.org/packages/e6/b8/af371ee94ab14b1f35f3d45ab5dd27d6bbb5ff30cede7610524fa8930e4e/matcher_py-0.5.8-cp38-cp38-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9678faee687180cdc14fd6ce97d4ce2ced3af029ed1a8e31c45400f3d979d849",
"md5": "ae5a1488e01fe22b03b518a7c5a2d65d",
"sha256": "31b2a870e9e23fe16556c444026fc40caf8fc537d48672ee1cb0f6fe057c027c"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp38-cp38-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "ae5a1488e01fe22b03b518a7c5a2d65d",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 2025874,
"upload_time": "2025-08-23T00:37:44",
"upload_time_iso_8601": "2025-08-23T00:37:44.048258Z",
"url": "https://files.pythonhosted.org/packages/96/78/faee687180cdc14fd6ce97d4ce2ced3af029ed1a8e31c45400f3d979d849/matcher_py-0.5.8-cp38-cp38-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "74dc9c0aa866d61de702b8085f1be02772471a8f393aa71906fcefe3ad3e58fd",
"md5": "9dae5cc0778a6501913bcbd617ca99af",
"sha256": "49c0e104ab9053380abe802b85d8630055e30799cd88ac0c23f0f4f0aa20a370"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "9dae5cc0778a6501913bcbd617ca99af",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1756552,
"upload_time": "2025-08-23T00:37:45",
"upload_time_iso_8601": "2025-08-23T00:37:45.612246Z",
"url": "https://files.pythonhosted.org/packages/74/dc/9c0aa866d61de702b8085f1be02772471a8f393aa71906fcefe3ad3e58fd/matcher_py-0.5.8-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "12207037237db15ffbd8c7d40f85c32dd5449d9c43b76f6ebefd090f0db712d3",
"md5": "ff4678c2285023c716e8e4bd14284dba",
"sha256": "14c752e22e0f6e2d1d3ef3179ca12b7c3dd740885a09370f856fb9c0f5785d4d"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "ff4678c2285023c716e8e4bd14284dba",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1650331,
"upload_time": "2025-08-23T00:37:47",
"upload_time_iso_8601": "2025-08-23T00:37:47.340477Z",
"url": "https://files.pythonhosted.org/packages/12/20/7037237db15ffbd8c7d40f85c32dd5449d9c43b76f6ebefd090f0db712d3/matcher_py-0.5.8-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "90912eb6b402586a04dcd525717e317f5273b0391b2641c671fdd69c551a5a91",
"md5": "d1eed63889f85cb323597d059714905b",
"sha256": "353ed76debb4020f1418fc79814e3130e76ad79fd1ba22acabb29a68ad7f85d8"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "d1eed63889f85cb323597d059714905b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1792043,
"upload_time": "2025-08-23T00:37:48",
"upload_time_iso_8601": "2025-08-23T00:37:48.398277Z",
"url": "https://files.pythonhosted.org/packages/90/91/2eb6b402586a04dcd525717e317f5273b0391b2641c671fdd69c551a5a91/matcher_py-0.5.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "49ff0326a3491f1c0c7ae2294032b8133e1ff7fba20d001c8589c8211043c8e8",
"md5": "e069046a5653ed22a33bb012d2c816a0",
"sha256": "176274d74514e9edec6fe8363c667e78fd6181b1cdf78612cfa762dbec75df14"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "e069046a5653ed22a33bb012d2c816a0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1845566,
"upload_time": "2025-08-23T00:37:49",
"upload_time_iso_8601": "2025-08-23T00:37:49.462369Z",
"url": "https://files.pythonhosted.org/packages/49/ff/0326a3491f1c0c7ae2294032b8133e1ff7fba20d001c8589c8211043c8e8/matcher_py-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "54b8f1fe040376c470638988902d9c537edc005048bfcfaec6de7d42f8e94e58",
"md5": "2944301f4edf83a59eb8a8871553eaa3",
"sha256": "ae7e30b3cc4dc1e77245141a51768dd700afe596ac946e84cea4b8dbcca1c980"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp39-cp39-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "2944301f4edf83a59eb8a8871553eaa3",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 2002800,
"upload_time": "2025-08-23T00:37:50",
"upload_time_iso_8601": "2025-08-23T00:37:50.685489Z",
"url": "https://files.pythonhosted.org/packages/54/b8/f1fe040376c470638988902d9c537edc005048bfcfaec6de7d42f8e94e58/matcher_py-0.5.8-cp39-cp39-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0f5ce1eee732b86f2cbee1cac6e224bb7129d59934bd1fedc964c3a55c54d9a1",
"md5": "bbd3c98cb7eb255bc3f07f908c42d6f9",
"sha256": "114787e01b79e60b3f3b84ba77c2d1a23e9f6cb6f0d8ba7c3f46dd0b3ffa5566"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp39-cp39-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "bbd3c98cb7eb255bc3f07f908c42d6f9",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 2025946,
"upload_time": "2025-08-23T00:37:51",
"upload_time_iso_8601": "2025-08-23T00:37:51.789834Z",
"url": "https://files.pythonhosted.org/packages/0f/5c/e1eee732b86f2cbee1cac6e224bb7129d59934bd1fedc964c3a55c54d9a1/matcher_py-0.5.8-cp39-cp39-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3131be219debf3eadee24478c433b1a8e3df81dc336c69e1fc9f574f3d4c60e4",
"md5": "3e96ab14e425fa6e8ce48d8e3dbd4c1b",
"sha256": "6d51efcd300c4b4d52b057ff2acbf17307bab5aed0d763164949bc510b986c3f"
},
"downloads": -1,
"filename": "matcher_py-0.5.8-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "3e96ab14e425fa6e8ce48d8e3dbd4c1b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1756536,
"upload_time": "2025-08-23T00:37:52",
"upload_time_iso_8601": "2025-08-23T00:37:52.877441Z",
"url": "https://files.pythonhosted.org/packages/31/31/be219debf3eadee24478c433b1a8e3df81dc336c69e1fc9f574f3d4c60e4/matcher_py-0.5.8-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8d04f7cd3b110e2385eb4aea5b268750d6d2fd964e012ca9b40b564d165385c1",
"md5": "28fa5d759a9e3c59f876b323db7358f5",
"sha256": "c9b737eb61d3a08e8e285f5bd7a08f5f7ee4675a8d9c7ad3a98561cf51a137d7"
},
"downloads": -1,
"filename": "matcher_py-0.5.8.tar.gz",
"has_sig": false,
"md5_digest": "28fa5d759a9e3c59f876b323db7358f5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 317255,
"upload_time": "2025-08-23T00:37:54",
"upload_time_iso_8601": "2025-08-23T00:37:54.235961Z",
"url": "https://files.pythonhosted.org/packages/8d/04/f7cd3b110e2385eb4aea5b268750d6d2fd964e012ca9b40b564d165385c1/matcher_py-0.5.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-23 00:37:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Lips7",
"github_project": "Matcher",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "matcher-py"
}