matspy


Namematspy JSON
Version 1.0.0 PyPI version JSON
download
home_page
SummarySparse matrix spy plot and sparkline renderer that works with Jupyter.
upload_time2023-10-26 03:06:25
maintainer
docs_urlNone
authorAdam Lugowski
requires_python>=3.7
license
keywords matrix sparse spy plot graph numpy scipy graphblas
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![tests](https://github.com/alugowski/matspy/actions/workflows/tests.yml/badge.svg)](https://github.com/alugowski/matspy/actions/workflows/tests.yml)
[![codecov](https://codecov.io/gh/alugowski/matspy/graph/badge.svg?token=m2xJcl5iAQ)](https://codecov.io/gh/alugowski/matspy)
[![PyPI version](https://badge.fury.io/py/matspy.svg)](https://pypi.org/project/matspy/)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/matspy.svg)](https://anaconda.org/conda-forge/matspy)

# MatSpy

Sparse matrix spy plot and sparkline renderer.

```python
from matspy import spy

spy(A)
```

<img src="https://raw.githubusercontent.com/alugowski/matspy/main/doc/images/spy.png" width="400" alt="Spy Plot"/>

Supports:
* **SciPy** - sparse matrices and arrays like `csr_matrix` and `coo_array` [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb)
* **NumPy** - `ndarray` [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-numpy.ipynb)
* **[Python-graphblas](https://github.com/python-graphblas/python-graphblas)** - `gb.Matrix` [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-python-graphblas.ipynb)
* **[PyData/Sparse](https://sparse.pydata.org/)** - `COO`, `DOK`, `GCXS`  [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-pydata-sparse.ipynb)

Features:
* Simple `spy()` method plots non-zero structure of a matrix, similar to MatLAB's spy.
* Sparklines: `to_sparkline()` creates small self-contained spy plots for inline HTML visuals.
* FAST and handles very large matrices.

See a [Jupyter notebook demo](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb).

```shell
pip install matspy
```
```shell
conda install matspy
 ```

## Methods
* `spy(A)`: Plot the sparsity pattern (location of nonzero values) of sparse matrix `A`.
* `to_sparkline(A)`: Return a small spy plot as a self-contained HTML string. Multiple sparklines can be automatically to-scale with each other using the `retscale` and `scale` arguments.
* `spy_to_mpl(A)`: Same as `spy()` but returns the matplotlib Figure without showing it.
* `to_spy_heatmap(A)`: Return the raw 2D array for spy plots. 

## Examples

See the [demo notebook](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb) for more.

#### Save spy plot as a PNG image

```python
fig, ax = matspy.spy_to_mpl(A)
fig.savefig("spy.png", bbox_inches='tight')
```

## Arguments

All methods take the same arguments. Apart from the matrix itself:

* `title`: string label. If `True`, then a matrix description is auto generated.
* `indices`: Whether to show matrix indices.
* `figsize`, `sparkline_size`: size of the plot, in inches
* `shading`: `binary`, `relative`, `absolute`.
* `buckets`: spy plot pixels (longest side).
* `dpi`: determine `buckets` relative to figure size.
* `precision`: For numpy arrays, only plot values with magnitude greater than `precision`. Like [matplotlib.pyplot.spy()](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.spy.html)'s `precision`.

### Overriding defaults
`matspy.params` contains the default values for all arguments.

For example, to default to binary shading, no title, and no indices:

```python
matspy.params.shading = 'binary'
matspy.params.title = False
matspy.params.indices = False
```

## Jupyter

`spy()` simply shows a matplotlib figure and works well within Jupyter.

`to_sparkline()` creates small spy plots that work anywhere HTML is displayed.

# Fast
All operations work with very large matrices.
A spy plot of tens of millions of elements takes less than half a second.

Large matrices are downscaled using two native matrix multiplies. The final dense 2D image is small.

<img src="https://raw.githubusercontent.com/alugowski/matspy/main/doc/images/triple_product.png" height="125" width="400" alt="triple product"/>

Note: the spy plots in this image were created with `to_sparkline()`. Code in the [demo notebook](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb).

# Spy Plot Anti-Aliasing
One application of spy plots is to quickly see if a matrix has a noticeable structure.
Aliasing artifacts can give the false impression of structure where none exists,
such as moiré or even a false grid pattern.

MatSpy employs some simple methods to help eliminate these effects in most cases.

![sparkline AA](https://raw.githubusercontent.com/alugowski/matspy/main/doc/images/sparkline_aa.png)

See the [Anti-Aliasing demo](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-anti-aliasing.ipynb) for more.

# How to support more packages

Each package that MatSpy supports implements two classes:

* `Driver`: Declares what types are supported and supplies an adapter.
  * `get_supported_type_prefixes`: This declares what types are supported, as strings to avoid unnecessary imports.
  * `adapt_spy(A)`: Returns a `MatrixSpyAdapter` for a matrix that this driver supports.
* `MatrixSpyAdapter`. A common interface for extracting spy data.
  * `describe()`: Describes the adapted matrix. This description serves as the plot title.
  * `get_shape()`: Returns the adapted matrix's shape.
  * `get_spy()`: Returns spy plot data as a dense 2D numpy array.

See [matspy/adapters](matspy/adapters) for details.

You may use `matspy.register_driver` to register a `Driver` for your own matrix class.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "matspy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "matrix,sparse,spy,plot,graph,numpy,scipy,graphblas",
    "author": "Adam Lugowski",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/7e/d7/36edf302c496ae21f6ad0244d28ac4840ede8919ae50ffc12d063caec707/matspy-1.0.0.tar.gz",
    "platform": null,
    "description": "[![tests](https://github.com/alugowski/matspy/actions/workflows/tests.yml/badge.svg)](https://github.com/alugowski/matspy/actions/workflows/tests.yml)\n[![codecov](https://codecov.io/gh/alugowski/matspy/graph/badge.svg?token=m2xJcl5iAQ)](https://codecov.io/gh/alugowski/matspy)\n[![PyPI version](https://badge.fury.io/py/matspy.svg)](https://pypi.org/project/matspy/)\n[![Conda Version](https://img.shields.io/conda/vn/conda-forge/matspy.svg)](https://anaconda.org/conda-forge/matspy)\n\n# MatSpy\n\nSparse matrix spy plot and sparkline renderer.\n\n```python\nfrom matspy import spy\n\nspy(A)\n```\n\n<img src=\"https://raw.githubusercontent.com/alugowski/matspy/main/doc/images/spy.png\" width=\"400\" alt=\"Spy Plot\"/>\n\nSupports:\n* **SciPy** - sparse matrices and arrays like `csr_matrix` and `coo_array` [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb)\n* **NumPy** - `ndarray` [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-numpy.ipynb)\n* **[Python-graphblas](https://github.com/python-graphblas/python-graphblas)** - `gb.Matrix` [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-python-graphblas.ipynb)\n* **[PyData/Sparse](https://sparse.pydata.org/)** - `COO`, `DOK`, `GCXS`  [(https://nbviewer.org/github/alugowski/matspy/blob/main/demo)](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-pydata-sparse.ipynb)\n\nFeatures:\n* Simple `spy()` method plots non-zero structure of a matrix, similar to MatLAB's spy.\n* Sparklines: `to_sparkline()` creates small self-contained spy plots for inline HTML visuals.\n* FAST and handles very large matrices.\n\nSee a [Jupyter notebook demo](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb).\n\n```shell\npip install matspy\n```\n```shell\nconda install matspy\n ```\n\n## Methods\n* `spy(A)`: Plot the sparsity pattern (location of nonzero values) of sparse matrix `A`.\n* `to_sparkline(A)`: Return a small spy plot as a self-contained HTML string. Multiple sparklines can be automatically to-scale with each other using the `retscale` and `scale` arguments.\n* `spy_to_mpl(A)`: Same as `spy()` but returns the matplotlib Figure without showing it.\n* `to_spy_heatmap(A)`: Return the raw 2D array for spy plots. \n\n## Examples\n\nSee the [demo notebook](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb) for more.\n\n#### Save spy plot as a PNG image\n\n```python\nfig, ax = matspy.spy_to_mpl(A)\nfig.savefig(\"spy.png\", bbox_inches='tight')\n```\n\n## Arguments\n\nAll methods take the same arguments. Apart from the matrix itself:\n\n* `title`: string label. If `True`, then a matrix description is auto generated.\n* `indices`: Whether to show matrix indices.\n* `figsize`, `sparkline_size`: size of the plot, in inches\n* `shading`: `binary`, `relative`, `absolute`.\n* `buckets`: spy plot pixels (longest side).\n* `dpi`: determine `buckets` relative to figure size.\n* `precision`: For numpy arrays, only plot values with magnitude greater than `precision`. Like [matplotlib.pyplot.spy()](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.spy.html)'s `precision`.\n\n### Overriding defaults\n`matspy.params` contains the default values for all arguments.\n\nFor example, to default to binary shading, no title, and no indices:\n\n```python\nmatspy.params.shading = 'binary'\nmatspy.params.title = False\nmatspy.params.indices = False\n```\n\n## Jupyter\n\n`spy()` simply shows a matplotlib figure and works well within Jupyter.\n\n`to_sparkline()` creates small spy plots that work anywhere HTML is displayed.\n\n# Fast\nAll operations work with very large matrices.\nA spy plot of tens of millions of elements takes less than half a second.\n\nLarge matrices are downscaled using two native matrix multiplies. The final dense 2D image is small.\n\n<img src=\"https://raw.githubusercontent.com/alugowski/matspy/main/doc/images/triple_product.png\" height=\"125\" width=\"400\" alt=\"triple product\"/>\n\nNote: the spy plots in this image were created with `to_sparkline()`. Code in the [demo notebook](https://nbviewer.org/github/alugowski/matspy/blob/main/demo.ipynb).\n\n# Spy Plot Anti-Aliasing\nOne application of spy plots is to quickly see if a matrix has a noticeable structure.\nAliasing artifacts can give the false impression of structure where none exists,\nsuch as moir\u00e9 or even a false grid pattern.\n\nMatSpy employs some simple methods to help eliminate these effects in most cases.\n\n![sparkline AA](https://raw.githubusercontent.com/alugowski/matspy/main/doc/images/sparkline_aa.png)\n\nSee the [Anti-Aliasing demo](https://nbviewer.org/github/alugowski/matspy/blob/main/demo-anti-aliasing.ipynb) for more.\n\n# How to support more packages\n\nEach package that MatSpy supports implements two classes:\n\n* `Driver`: Declares what types are supported and supplies an adapter.\n  * `get_supported_type_prefixes`: This declares what types are supported, as strings to avoid unnecessary imports.\n  * `adapt_spy(A)`: Returns a `MatrixSpyAdapter` for a matrix that this driver supports.\n* `MatrixSpyAdapter`. A common interface for extracting spy data.\n  * `describe()`: Describes the adapted matrix. This description serves as the plot title.\n  * `get_shape()`: Returns the adapted matrix's shape.\n  * `get_spy()`: Returns spy plot data as a dense 2D numpy array.\n\nSee [matspy/adapters](matspy/adapters) for details.\n\nYou may use `matspy.register_driver` to register a `Driver` for your own matrix class.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Sparse matrix spy plot and sparkline renderer that works with Jupyter.",
    "version": "1.0.0",
    "project_urls": {
        "homepage": "https://github.com/alugowski/matspy",
        "repository": "https://github.com/alugowski/matspy"
    },
    "split_keywords": [
        "matrix",
        "sparse",
        "spy",
        "plot",
        "graph",
        "numpy",
        "scipy",
        "graphblas"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d8efc4108012589c50b767988eee40cea60159c71eefe733eb891d830fa820aa",
                "md5": "dd4bb337b60f209ce5828a5422282cfb",
                "sha256": "455696693a3eb9bd774aadb2fa3a0dc8125c2fa86ff57a7760bdc0618895451b"
            },
            "downloads": -1,
            "filename": "matspy-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dd4bb337b60f209ce5828a5422282cfb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 16629,
            "upload_time": "2023-10-26T03:06:24",
            "upload_time_iso_8601": "2023-10-26T03:06:24.338908Z",
            "url": "https://files.pythonhosted.org/packages/d8/ef/c4108012589c50b767988eee40cea60159c71eefe733eb891d830fa820aa/matspy-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ed736edf302c496ae21f6ad0244d28ac4840ede8919ae50ffc12d063caec707",
                "md5": "fd9d2ea3867f7b1cb81256524d13f0fc",
                "sha256": "4c9abda5c57c4e35fca9aa6d436995c0ecfdc001b28a45f746f408e9acf6b9e8"
            },
            "downloads": -1,
            "filename": "matspy-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fd9d2ea3867f7b1cb81256524d13f0fc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 16152,
            "upload_time": "2023-10-26T03:06:25",
            "upload_time_iso_8601": "2023-10-26T03:06:25.777037Z",
            "url": "https://files.pythonhosted.org/packages/7e/d7/36edf302c496ae21f6ad0244d28ac4840ede8919ae50ffc12d063caec707/matspy-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-26 03:06:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alugowski",
    "github_project": "matspy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "matspy"
}
        
Elapsed time: 0.14640s