mavenn


Namemavenn JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://mavenn.readthedocs.io
SummaryMAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect
upload_time2025-01-23 22:47:46
maintainerNone
docs_urlNone
authorAmmar Tareen and Justin B. Kinney
requires_python>=3.8
licenseMIT
keywords genotype-phenotype maps multiplex assays variant effect deep mutational scanning massively parallel reporter assays
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect
========================================================================

[![PyPI version](https://badge.fury.io/py/mavenn.svg)](https://badge.fury.io/py/mavenn)
[![Downloads](https://static.pepy.tech/personalized-badge/mavenn?period=total&units=international_system&left_color=black&right_color=blue&left_text=Downloads)](https://pepy.tech/project/mavenn)
[![Documentation Status](https://readthedocs.org/projects/mavenn/badge/?version=latest)](https://mavenn.readthedocs.io/en/latest/?badge=latest)


MAVE-NN enables the rapid quantitative modeling of genotype-phenotype (G-P) maps from the data produced by multiplex assays of variant effect (MAVEs). Such assays include deep mutational scanning (DMS) experiments on proteins, massively parallel reporter assays (MPRAs) on DNA or RNA regulatory sequences, and more. MAVE-NN conceptualizes G-P map inference as a problem in information compression; this problem is then solved by training a neural network using a TensorFlow backend. For installation instructions, tutorials, and documentation, please refer to the MAVE-NN website, https://mavenn.readthedocs.io/. For an extended discussion of this approach and its applications, please refer to our manuscript:

* Tareen, A., Kooshkbaghi, M., Posfai, A. et al. MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect. <em>Genome Biol</em> **23**, 98 (2022). https://doi.org/10.1186/s13059-022-02661-7


            

Raw data

            {
    "_id": null,
    "home_page": "https://mavenn.readthedocs.io",
    "name": "mavenn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "genotype-phenotype maps, multiplex assays, variant effect, deep mutational scanning, massively parallel reporter assays",
    "author": "Ammar Tareen and Justin B. Kinney",
    "author_email": "jkinney@cshl.edu",
    "download_url": "https://files.pythonhosted.org/packages/40/c2/5d538978247be8cf6cc477f7df27045804a13b69bddec27258b06982fd4c/mavenn-1.1.0.tar.gz",
    "platform": null,
    "description": "MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect\n========================================================================\n\n[![PyPI version](https://badge.fury.io/py/mavenn.svg)](https://badge.fury.io/py/mavenn)\n[![Downloads](https://static.pepy.tech/personalized-badge/mavenn?period=total&units=international_system&left_color=black&right_color=blue&left_text=Downloads)](https://pepy.tech/project/mavenn)\n[![Documentation Status](https://readthedocs.org/projects/mavenn/badge/?version=latest)](https://mavenn.readthedocs.io/en/latest/?badge=latest)\n\n\nMAVE-NN enables the rapid quantitative modeling of genotype-phenotype (G-P) maps from the data produced by multiplex assays of variant effect (MAVEs). Such assays include deep mutational scanning (DMS) experiments on proteins, massively parallel reporter assays (MPRAs) on DNA or RNA regulatory sequences, and more. MAVE-NN conceptualizes G-P map inference as a problem in information compression; this problem is then solved by training a neural network using a TensorFlow backend. For installation instructions, tutorials, and documentation, please refer to the MAVE-NN website, https://mavenn.readthedocs.io/. For an extended discussion of this approach and its applications, please refer to our manuscript:\n\n* Tareen, A., Kooshkbaghi, M., Posfai, A. et al. MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect. <em>Genome Biol</em> **23**, 98 (2022). https://doi.org/10.1186/s13059-022-02661-7\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect",
    "version": "1.1.0",
    "project_urls": {
        "Homepage": "https://mavenn.readthedocs.io"
    },
    "split_keywords": [
        "genotype-phenotype maps",
        " multiplex assays",
        " variant effect",
        " deep mutational scanning",
        " massively parallel reporter assays"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1a4fe36956813d3169ab10e728cfd5b1e84cda6c6662c0416bc6324c36d8a64a",
                "md5": "dab047d9e69c588eac1fd78763ff293b",
                "sha256": "e4710c9ddf70208154e192170d5ed2f6b2975d5f16a26c3654ad8a4d5542e578"
            },
            "downloads": -1,
            "filename": "mavenn-1.1.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dab047d9e69c588eac1fd78763ff293b",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.8",
            "size": 14207379,
            "upload_time": "2025-01-23T22:47:43",
            "upload_time_iso_8601": "2025-01-23T22:47:43.425668Z",
            "url": "https://files.pythonhosted.org/packages/1a/4f/e36956813d3169ab10e728cfd5b1e84cda6c6662c0416bc6324c36d8a64a/mavenn-1.1.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "40c25d538978247be8cf6cc477f7df27045804a13b69bddec27258b06982fd4c",
                "md5": "ba792b2b58b0bf14b280d33357aa826c",
                "sha256": "e86e759095e9de402a324453c5b0b222d39318ade8a8481bbcc2e4cfa0604b3d"
            },
            "downloads": -1,
            "filename": "mavenn-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ba792b2b58b0bf14b280d33357aa826c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 14198318,
            "upload_time": "2025-01-23T22:47:46",
            "upload_time_iso_8601": "2025-01-23T22:47:46.927086Z",
            "url": "https://files.pythonhosted.org/packages/40/c2/5d538978247be8cf6cc477f7df27045804a13b69bddec27258b06982fd4c/mavenn-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-23 22:47:46",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mavenn"
}
        
Elapsed time: 1.39693s