mcbs


Namemcbs JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/carlosguirado/mode-choice-benchmarking-sandbox
SummaryA benchmarking sandbox for mode choice models
upload_time2024-10-22 05:27:20
maintainerNone
docs_urlNone
authorCarlos Guirado
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Mode Choice Benchmarking Sandbox (MCBS)

A Python package for benchmarking discrete choice models for transportation mode choice analysis.

## Installation

You can install MCBS using pip:

```bash
pip install mcbs
```

## Quick Start

```python
from mcbs.benchmarking import Benchmark
from mcbs.datasets import DatasetLoader

# Load a dataset
benchmark = Benchmark("swissmetro_dataset")

# Define your models
models = {
    "MNL - Base Model": your_model_function
}

# Run benchmark
results = benchmark.run(models)

# Compare results
benchmark.compare_results(results)
```

## Features

- Easy access to transportation mode choice datasets
- Standardized benchmarking metrics
- Support for Biogeme model estimation
- Visualization of benchmark results

## Datasets

Currently available datasets:
- Swissmetro
- London Transport
- Mode Canada

## Requirements

- Python >=3.8
- NumPy >=2.0.0
- Pandas >=2.0.0
- Biogeme >=3.2.14
- Matplotlib >=3.0.0

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Contributing

We welcome contributions! Please see our contributing guidelines for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/carlosguirado/mode-choice-benchmarking-sandbox",
    "name": "mcbs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Carlos Guirado",
    "author_email": "guirado@berkeley.edu",
    "download_url": "https://files.pythonhosted.org/packages/9c/5f/c8f2c4c4777d57887b1358fbdae7dce2b6ae6e969f1ace4c384a6fac870a/mcbs-0.1.1.tar.gz",
    "platform": null,
    "description": "# Mode Choice Benchmarking Sandbox (MCBS)\n\nA Python package for benchmarking discrete choice models for transportation mode choice analysis.\n\n## Installation\n\nYou can install MCBS using pip:\n\n```bash\npip install mcbs\n```\n\n## Quick Start\n\n```python\nfrom mcbs.benchmarking import Benchmark\nfrom mcbs.datasets import DatasetLoader\n\n# Load a dataset\nbenchmark = Benchmark(\"swissmetro_dataset\")\n\n# Define your models\nmodels = {\n    \"MNL - Base Model\": your_model_function\n}\n\n# Run benchmark\nresults = benchmark.run(models)\n\n# Compare results\nbenchmark.compare_results(results)\n```\n\n## Features\n\n- Easy access to transportation mode choice datasets\n- Standardized benchmarking metrics\n- Support for Biogeme model estimation\n- Visualization of benchmark results\n\n## Datasets\n\nCurrently available datasets:\n- Swissmetro\n- London Transport\n- Mode Canada\n\n## Requirements\n\n- Python >=3.8\n- NumPy >=2.0.0\n- Pandas >=2.0.0\n- Biogeme >=3.2.14\n- Matplotlib >=3.0.0\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Contributing\n\nWe welcome contributions! Please see our contributing guidelines for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A benchmarking sandbox for mode choice models",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/carlosguirado/mode-choice-benchmarking-sandbox"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "130b083650c3ff1250ed35c30be5712ee45ce8f8ebc16a6bd35a40e6c865ac10",
                "md5": "7d9baf76850bffed45ed39038b513438",
                "sha256": "02dca2d7cb6b34bb7949059c225442e40aedbce0b80bbe4c282fc7dc2a771977"
            },
            "downloads": -1,
            "filename": "mcbs-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7d9baf76850bffed45ed39038b513438",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3439724,
            "upload_time": "2024-10-22T05:27:17",
            "upload_time_iso_8601": "2024-10-22T05:27:17.645010Z",
            "url": "https://files.pythonhosted.org/packages/13/0b/083650c3ff1250ed35c30be5712ee45ce8f8ebc16a6bd35a40e6c865ac10/mcbs-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9c5fc8f2c4c4777d57887b1358fbdae7dce2b6ae6e969f1ace4c384a6fac870a",
                "md5": "623659d05441ddbebcc807c8cee4ab6f",
                "sha256": "498c32d2d05b21d3eaf268333596a9e31fc6d9ef8c5cf8160f2c750b4a6e15c0"
            },
            "downloads": -1,
            "filename": "mcbs-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "623659d05441ddbebcc807c8cee4ab6f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3447859,
            "upload_time": "2024-10-22T05:27:20",
            "upload_time_iso_8601": "2024-10-22T05:27:20.061536Z",
            "url": "https://files.pythonhosted.org/packages/9c/5f/c8f2c4c4777d57887b1358fbdae7dce2b6ae6e969f1ace4c384a6fac870a/mcbs-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-22 05:27:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "carlosguirado",
    "github_project": "mode-choice-benchmarking-sandbox",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "mcbs"
}
        
Elapsed time: 1.48355s