Name | mcfa JSON |
Version |
0.1.6
JSON |
| download |
home_page | https://github.com/maxmahlke/mcfa.git |
Summary | Mixtures of Common Factor Analyzers with missing data |
upload_time | 2024-12-18 11:53:19 |
maintainer | None |
docs_url | None |
author | Max Mahlke |
requires_python | >=3.8 |
license | MIT |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[](https://arxiv.org/abs/2203.11229) [](https://github.com/psf/black)
<p align="center">
<img width="260" src="https://raw.githubusercontent.com/maxmahlke/mcfa/main/gfx/logo_mcfa.png">
</p>
This `python` package implements the Mixtures of Common Factor Analyzers model
introduced by [Baek+ 2010](https://ieeexplore.ieee.org/document/5184847). It
uses [tensorflow](https://www.tensorflow.org/) to implement a stochastic
gradient descent, which allows for model training without prior imputation of
missing data. The interface resembles the [sklearn](https://scikit-learn.org/stable/) model API.
# Documentation
Refer to the `docs/documentation.ipynb` for the documentation and
`docs/4d_gaussian.ipynb` for an example application.
# Install
Install from PyPi using `pip`:
$ pip install mcfa
The minimum required `python` version is 3.8.
# Alternatives
- [EMMIXmfa](https://github.com/suren-rathnayake/EMMIXmfa) in `R`
- [Casey+ 2019](https://github.com/andycasey/mcfa) in `python`
Compared to this implementation, Casey+ 2019 use an EM-algorithm instead of a
stochastic gradient descent. This requires the imputation of the missing values
**before** the model training. On the other hand, there are more initialization
routines the lower space loadings and factors available in the Casey+ 2019 implementation.
Raw data
{
"_id": null,
"home_page": "https://github.com/maxmahlke/mcfa.git",
"name": "mcfa",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Max Mahlke",
"author_email": "max.mahlke@oca.eu",
"download_url": "https://files.pythonhosted.org/packages/94/31/89d96361e91966f2f1af211db70b90169dd267daf171dc8de5d2ee544f02/mcfa-0.1.6.tar.gz",
"platform": null,
"description": "[](https://arxiv.org/abs/2203.11229) [](https://github.com/psf/black)\n\n<p align=\"center\">\n <img width=\"260\" src=\"https://raw.githubusercontent.com/maxmahlke/mcfa/main/gfx/logo_mcfa.png\">\n</p>\n\nThis `python` package implements the Mixtures of Common Factor Analyzers model\nintroduced by [Baek+ 2010](https://ieeexplore.ieee.org/document/5184847). It\nuses [tensorflow](https://www.tensorflow.org/) to implement a stochastic\ngradient descent, which allows for model training without prior imputation of\nmissing data. The interface resembles the [sklearn](https://scikit-learn.org/stable/) model API.\n\n# Documentation\n\nRefer to the `docs/documentation.ipynb` for the documentation and\n`docs/4d_gaussian.ipynb` for an example application.\n\n# Install\n\nInstall from PyPi using `pip`:\n\n $ pip install mcfa\n\nThe minimum required `python` version is 3.8.\n\n# Alternatives\n\n- [EMMIXmfa](https://github.com/suren-rathnayake/EMMIXmfa) in `R`\n- [Casey+ 2019](https://github.com/andycasey/mcfa) in `python`\n\nCompared to this implementation, Casey+ 2019 use an EM-algorithm instead of a\nstochastic gradient descent. This requires the imputation of the missing values\n**before** the model training. On the other hand, there are more initialization\nroutines the lower space loadings and factors available in the Casey+ 2019 implementation.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Mixtures of Common Factor Analyzers with missing data",
"version": "0.1.6",
"project_urls": {
"Documentation": "https://github.com/maxmahlke/mcfa.git",
"Homepage": "https://github.com/maxmahlke/mcfa.git",
"Repository": "https://github.com/maxmahlke/mcfa.git"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b4edf14f29ddd43a1d624ea841047c83ecc5cb6440b1011406fdb1166d834007",
"md5": "7201c4c5886fb891d3b27bc013e0569b",
"sha256": "039cddd9fcd19fdb8d3172889c50df3f3ce5c3badb27969820994e9deba6fe7f"
},
"downloads": -1,
"filename": "mcfa-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7201c4c5886fb891d3b27bc013e0569b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 12950,
"upload_time": "2024-12-18T11:53:16",
"upload_time_iso_8601": "2024-12-18T11:53:16.989177Z",
"url": "https://files.pythonhosted.org/packages/b4/ed/f14f29ddd43a1d624ea841047c83ecc5cb6440b1011406fdb1166d834007/mcfa-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "943189d96361e91966f2f1af211db70b90169dd267daf171dc8de5d2ee544f02",
"md5": "fd3c0a07d1e22db9c1fe158c700959f0",
"sha256": "f3edd500039073b6429ac709600476c03601e4af5681cbe96631fffe76b72b5e"
},
"downloads": -1,
"filename": "mcfa-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "fd3c0a07d1e22db9c1fe158c700959f0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 12729,
"upload_time": "2024-12-18T11:53:19",
"upload_time_iso_8601": "2024-12-18T11:53:19.524405Z",
"url": "https://files.pythonhosted.org/packages/94/31/89d96361e91966f2f1af211db70b90169dd267daf171dc8de5d2ee544f02/mcfa-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 11:53:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "maxmahlke",
"github_project": "mcfa",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "mcfa"
}