mcp-pr-recommender


Namemcp-pr-recommender JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/manavgup/mcp_pr_recommender
SummaryAI-powered MCP server for intelligent PR grouping recommendations
upload_time2025-08-07 14:29:52
maintainerNone
docs_urlNone
authorManav Gupta
requires_python<4.0,>=3.10
licenseMIT
keywords mcp model-context-protocol ai pull-requests mcp-server openai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MCP PR Recommender

## Overview
The MCP PR Recommender is an intelligent PR boundary detection and recommendation system designed to analyze git changes and generate atomic, logically-grouped pull request (PR) recommendations. It aims to optimize code review efficiency and deployment safety by providing structured PR suggestions with titles, descriptions, and rationale.

## Features
- Generate PR recommendations from git analysis data.
- Analyze feasibility and risks of specific PR recommendations.
- Retrieve available PR grouping strategies and settings.
- Validate generated PR recommendations for quality, completeness, and atomicity.
- Supports both STDIO and HTTP transport protocols for flexible integration.

## Usage
The server can be run in different modes:
- **STDIO mode**: For direct MCP client connections.
- **HTTP mode**: For integration with MCP Gateway or other HTTP clients.

### Running the server
```bash
# Run in STDIO mode (default)
python -m mcp_pr_recommender.main --transport stdio

# Run in HTTP mode
python -m mcp_pr_recommender.main --transport streamable-http --host 127.0.0.1 --port 9071
```

## Input and Output
- **Input**: Expects git analysis data from the `mcp_local_repo_analyzer` project.
- **Output**: Structured PR recommendations including grouping, titles, descriptions, and rationale.

## Tools Provided
- `generate_pr_recommendations`: Generate PR recommendations from git analysis.
- `analyze_pr_feasibility`: Analyze feasibility and risks of PR recommendations.
- `get_strategy_options`: Get available grouping strategies.
- `validate_pr_recommendations`: Validate PR recommendations for quality.

## License
Apache-2.0 License

## Author
Manav Gupta &lt;manavg@gmail.com&gt;

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/manavgup/mcp_pr_recommender",
    "name": "mcp-pr-recommender",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "mcp, model-context-protocol, ai, pull-requests, mcp-server, openai",
    "author": "Manav Gupta",
    "author_email": "manavg@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/4e/11/8e663a75b9a3d674d27a5c01ba873a87ebc9736b08e9256ae713d214c2db/mcp_pr_recommender-0.1.0.tar.gz",
    "platform": null,
    "description": "# MCP PR Recommender\n\n## Overview\nThe MCP PR Recommender is an intelligent PR boundary detection and recommendation system designed to analyze git changes and generate atomic, logically-grouped pull request (PR) recommendations. It aims to optimize code review efficiency and deployment safety by providing structured PR suggestions with titles, descriptions, and rationale.\n\n## Features\n- Generate PR recommendations from git analysis data.\n- Analyze feasibility and risks of specific PR recommendations.\n- Retrieve available PR grouping strategies and settings.\n- Validate generated PR recommendations for quality, completeness, and atomicity.\n- Supports both STDIO and HTTP transport protocols for flexible integration.\n\n## Usage\nThe server can be run in different modes:\n- **STDIO mode**: For direct MCP client connections.\n- **HTTP mode**: For integration with MCP Gateway or other HTTP clients.\n\n### Running the server\n```bash\n# Run in STDIO mode (default)\npython -m mcp_pr_recommender.main --transport stdio\n\n# Run in HTTP mode\npython -m mcp_pr_recommender.main --transport streamable-http --host 127.0.0.1 --port 9071\n```\n\n## Input and Output\n- **Input**: Expects git analysis data from the `mcp_local_repo_analyzer` project.\n- **Output**: Structured PR recommendations including grouping, titles, descriptions, and rationale.\n\n## Tools Provided\n- `generate_pr_recommendations`: Generate PR recommendations from git analysis.\n- `analyze_pr_feasibility`: Analyze feasibility and risks of PR recommendations.\n- `get_strategy_options`: Get available grouping strategies.\n- `validate_pr_recommendations`: Validate PR recommendations for quality.\n\n## License\nApache-2.0 License\n\n## Author\nManav Gupta &lt;manavg@gmail.com&gt;\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AI-powered MCP server for intelligent PR grouping recommendations",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://github.com/manavgup/mcp_pr_recommender#readme",
        "Homepage": "https://github.com/manavgup/mcp_pr_recommender",
        "Repository": "https://github.com/manavgup/mcp_pr_recommender"
    },
    "split_keywords": [
        "mcp",
        " model-context-protocol",
        " ai",
        " pull-requests",
        " mcp-server",
        " openai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cd037612b8e7a67b464aef9bf053ce8093881a747fe434ab47b1cfb75bd32884",
                "md5": "dbf81b01fd213e07a36942a324520697",
                "sha256": "ef63b5fd826fcf87dd7366b9d78d9cd555759a25193de77d505b883d3cca561f"
            },
            "downloads": -1,
            "filename": "mcp_pr_recommender-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dbf81b01fd213e07a36942a324520697",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 99738,
            "upload_time": "2025-08-07T14:29:50",
            "upload_time_iso_8601": "2025-08-07T14:29:50.832887Z",
            "url": "https://files.pythonhosted.org/packages/cd/03/7612b8e7a67b464aef9bf053ce8093881a747fe434ab47b1cfb75bd32884/mcp_pr_recommender-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4e118e663a75b9a3d674d27a5c01ba873a87ebc9736b08e9256ae713d214c2db",
                "md5": "fea2d363f3ddcd58420c297069e9027c",
                "sha256": "56b724d33bf13c74578e57386bca92dfc7198f000878273324ede0b3b1ab1982"
            },
            "downloads": -1,
            "filename": "mcp_pr_recommender-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fea2d363f3ddcd58420c297069e9027c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 72192,
            "upload_time": "2025-08-07T14:29:52",
            "upload_time_iso_8601": "2025-08-07T14:29:52.082959Z",
            "url": "https://files.pythonhosted.org/packages/4e/11/8e663a75b9a3d674d27a5c01ba873a87ebc9736b08e9256ae713d214c2db/mcp_pr_recommender-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-07 14:29:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "manavgup",
    "github_project": "mcp_pr_recommender",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mcp-pr-recommender"
}
        
Elapsed time: 1.91146s