# MCP PR Recommender
## Overview
The MCP PR Recommender is an intelligent PR boundary detection and recommendation system designed to analyze git changes and generate atomic, logically-grouped pull request (PR) recommendations. It aims to optimize code review efficiency and deployment safety by providing structured PR suggestions with titles, descriptions, and rationale.
## Features
- Generate PR recommendations from git analysis data.
- Analyze feasibility and risks of specific PR recommendations.
- Retrieve available PR grouping strategies and settings.
- Validate generated PR recommendations for quality, completeness, and atomicity.
- Supports both STDIO and HTTP transport protocols for flexible integration.
## Usage
The server can be run in different modes:
- **STDIO mode**: For direct MCP client connections.
- **HTTP mode**: For integration with MCP Gateway or other HTTP clients.
### Running the server
```bash
# Run in STDIO mode (default)
python -m mcp_pr_recommender.main --transport stdio
# Run in HTTP mode
python -m mcp_pr_recommender.main --transport streamable-http --host 127.0.0.1 --port 9071
```
## Input and Output
- **Input**: Expects git analysis data from the `mcp_local_repo_analyzer` project.
- **Output**: Structured PR recommendations including grouping, titles, descriptions, and rationale.
## Tools Provided
- `generate_pr_recommendations`: Generate PR recommendations from git analysis.
- `analyze_pr_feasibility`: Analyze feasibility and risks of PR recommendations.
- `get_strategy_options`: Get available grouping strategies.
- `validate_pr_recommendations`: Validate PR recommendations for quality.
## License
Apache-2.0 License
## Author
Manav Gupta <manavg@gmail.com>
Raw data
{
"_id": null,
"home_page": "https://github.com/manavgup/mcp_pr_recommender",
"name": "mcp-pr-recommender",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "mcp, model-context-protocol, ai, pull-requests, mcp-server, openai",
"author": "Manav Gupta",
"author_email": "manavg@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/01/90/0c2952dc424600b5ca417ec015ce2f7cbc67cfe21e64714eb53d3fd6ee59/mcp_pr_recommender-0.1.1.tar.gz",
"platform": null,
"description": "# MCP PR Recommender\n\n## Overview\nThe MCP PR Recommender is an intelligent PR boundary detection and recommendation system designed to analyze git changes and generate atomic, logically-grouped pull request (PR) recommendations. It aims to optimize code review efficiency and deployment safety by providing structured PR suggestions with titles, descriptions, and rationale.\n\n## Features\n- Generate PR recommendations from git analysis data.\n- Analyze feasibility and risks of specific PR recommendations.\n- Retrieve available PR grouping strategies and settings.\n- Validate generated PR recommendations for quality, completeness, and atomicity.\n- Supports both STDIO and HTTP transport protocols for flexible integration.\n\n## Usage\nThe server can be run in different modes:\n- **STDIO mode**: For direct MCP client connections.\n- **HTTP mode**: For integration with MCP Gateway or other HTTP clients.\n\n### Running the server\n```bash\n# Run in STDIO mode (default)\npython -m mcp_pr_recommender.main --transport stdio\n\n# Run in HTTP mode\npython -m mcp_pr_recommender.main --transport streamable-http --host 127.0.0.1 --port 9071\n```\n\n## Input and Output\n- **Input**: Expects git analysis data from the `mcp_local_repo_analyzer` project.\n- **Output**: Structured PR recommendations including grouping, titles, descriptions, and rationale.\n\n## Tools Provided\n- `generate_pr_recommendations`: Generate PR recommendations from git analysis.\n- `analyze_pr_feasibility`: Analyze feasibility and risks of PR recommendations.\n- `get_strategy_options`: Get available grouping strategies.\n- `validate_pr_recommendations`: Validate PR recommendations for quality.\n\n## License\nApache-2.0 License\n\n## Author\nManav Gupta <manavg@gmail.com>\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "AI-powered MCP server for intelligent PR grouping recommendations",
"version": "0.1.1",
"project_urls": {
"Documentation": "https://github.com/manavgup/mcp_pr_recommender#readme",
"Homepage": "https://github.com/manavgup/mcp_pr_recommender",
"Repository": "https://github.com/manavgup/mcp_pr_recommender"
},
"split_keywords": [
"mcp",
" model-context-protocol",
" ai",
" pull-requests",
" mcp-server",
" openai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d91bb3fd910872cfec9ce4ead64c9a4e505bd0f407814320a69b173e24c52a6f",
"md5": "43ef0b93d943970ccf3e18a01fd77003",
"sha256": "595e76e40763a46adf64df91cd2449131fe530b7417a7a90bf01a24ce337615d"
},
"downloads": -1,
"filename": "mcp_pr_recommender-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "43ef0b93d943970ccf3e18a01fd77003",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 36412,
"upload_time": "2025-08-16T14:25:07",
"upload_time_iso_8601": "2025-08-16T14:25:07.565925Z",
"url": "https://files.pythonhosted.org/packages/d9/1b/b3fd910872cfec9ce4ead64c9a4e505bd0f407814320a69b173e24c52a6f/mcp_pr_recommender-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "01900c2952dc424600b5ca417ec015ce2f7cbc67cfe21e64714eb53d3fd6ee59",
"md5": "63d4b8c0838e8c30408392f3483de63a",
"sha256": "126d9a58b2711e2256a8dc7bb69380fa46077a14a4f3bc1f93c8eb3f558866be"
},
"downloads": -1,
"filename": "mcp_pr_recommender-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "63d4b8c0838e8c30408392f3483de63a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 29485,
"upload_time": "2025-08-16T14:25:08",
"upload_time_iso_8601": "2025-08-16T14:25:08.558279Z",
"url": "https://files.pythonhosted.org/packages/01/90/0c2952dc424600b5ca417ec015ce2f7cbc67cfe21e64714eb53d3fd6ee59/mcp_pr_recommender-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-16 14:25:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "manavgup",
"github_project": "mcp_pr_recommender",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mcp-pr-recommender"
}