Mirrored Density Plot
=====================
This function creates a MD-plot for each column of the dataframe. The MD-plot is a visualization
for a boxplot-like Shape of the PDF published in [Thrun/Ultsch, 2019]. It is an improvement of
violin or so-called bean plots and posses advantages in comparison to the conventional well-known
box plot [Thrun/Ultsch, 2019]. This is the Python implementation of the function MD-Plot contained
in R package [DataVisualizations](https://cran.r-project.org/web/packages/DataVisualizations/index.html)
Basic Usage
^^^^^^^^^^^
from md_plot import MDplot, load_examples
dctExamples = load_examples()
MDplot(dctExamples["BimodalArtificial"])
Raw data
{
"_id": null,
"home_page": "",
"name": "md-plot",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "data_science violin density_plot",
"author": "TinoGehlert",
"author_email": "tinogehlert@aol.com",
"download_url": "https://files.pythonhosted.org/packages/28/b5/70202062b3451d856d948c5a6a69b942bb620b361920d0ff6c1adc8b6897/md_plot-0.2.0.tar.gz",
"platform": null,
"description": "Mirrored Density Plot\r\n=====================\r\n\r\nThis function creates a MD-plot for each column of the dataframe. The MD-plot is a visualization\r\nfor a boxplot-like Shape of the PDF published in [Thrun/Ultsch, 2019]. It is an improvement of\r\nviolin or so-called bean plots and posses advantages in comparison to the conventional well-known\r\nbox plot [Thrun/Ultsch, 2019]. This is the Python implementation of the function MD-Plot contained \r\nin R package [DataVisualizations](https://cran.r-project.org/web/packages/DataVisualizations/index.html)\r\n\r\nBasic Usage\r\n^^^^^^^^^^^\r\n\r\nfrom md_plot import MDplot, load_examples\r\n\r\ndctExamples = load_examples()\r\n\r\nMDplot(dctExamples[\"BimodalArtificial\"])\r\n",
"bugtrack_url": null,
"license": "GNU General Public License v3 (GPLv3)",
"summary": "Draws a mirrored density plot for each input column",
"version": "0.2.0",
"project_urls": {
"Docs": "https://md-plot.readthedocs.io",
"Download": "https://github.com/TinoGehlert/md_plot/archive/v0.2.0.tar.gz",
"R-Version": "https://cran.r-project.org/web/packages/DataVisualizations/index.html",
"Source": "https://github.com/TinoGehlert/md_plot"
},
"split_keywords": [
"data_science",
"violin",
"density_plot"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "37025332e964459b63aa330fabc8ad10de891c48f994c749183228bb18f55de3",
"md5": "844cd21f4deb8dcbd3e2aee3ab40065a",
"sha256": "868d4c7d3ae54d4de3dc83b0f0adf5264f8a7a8513a31fdc36ecab9e31872de1"
},
"downloads": -1,
"filename": "md_plot-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "844cd21f4deb8dcbd3e2aee3ab40065a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 1850480,
"upload_time": "2023-07-01T11:54:22",
"upload_time_iso_8601": "2023-07-01T11:54:22.142337Z",
"url": "https://files.pythonhosted.org/packages/37/02/5332e964459b63aa330fabc8ad10de891c48f994c749183228bb18f55de3/md_plot-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "28b570202062b3451d856d948c5a6a69b942bb620b361920d0ff6c1adc8b6897",
"md5": "215a9668d2aedb9b45f07012f7be5195",
"sha256": "c014ec4c6bfe10c39e39641eca1617d557f0d8102195fe99f74a889c1db836d6"
},
"downloads": -1,
"filename": "md_plot-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "215a9668d2aedb9b45f07012f7be5195",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3280029,
"upload_time": "2023-07-01T11:54:30",
"upload_time_iso_8601": "2023-07-01T11:54:30.369137Z",
"url": "https://files.pythonhosted.org/packages/28/b5/70202062b3451d856d948c5a6a69b942bb620b361920d0ff6c1adc8b6897/md_plot-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-01 11:54:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "TinoGehlert",
"github_project": "md_plot",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "md-plot"
}