mdaviz


Namemdaviz JSON
Version 1.1.0 PyPI version JSON
download
home_pageNone
SummaryPython Qt5 application to visualize MDA data.
upload_time2025-07-11 18:40:51
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords bluesky databroker tiled catalog
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mdaviz

Python Qt5 application to visualize mda data.

GH tag | GH release | PyPI
--- | --- | ---
[![tag](https://img.shields.io/github/tag/BCDA-APS/mdaviz.svg)](https://github.com/BCDA-APS/mdaviz/tags) | [![release](https://img.shields.io/github/release/BCDA-APS/mdaviz.svg)](https://github.com/BCDA-APS/mdaviz/releases) | [![PyPi](https://img.shields.io/pypi/v/mdaviz.svg)](https://pypi.python.org/pypi/mdaviz)

Python version(s) | Unit Tests | Code Coverage | License
--- | --- | --- | ---
[![Python version](https://img.shields.io/pypi/pyversions/mdaviz.svg)](https://pypi.python.org/pypi/mdaviz) | [![Unit Tests](https://github.com/BCDA-APS/mdaviz/workflows/Unit%20Tests%20%26%20Code%20Coverage/badge.svg)](https://github.com/BCDA-APS/mdaviz/actions/workflows/unit_tests.yml) | [![Coverage Status](https://coveralls.io/repos/github/BCDA-APS/mdaviz/badge.svg?branch=main)](https://coveralls.io/github/BCDA-APS/mdaviz?branch=main) | [![license: ANL](https://img.shields.io/badge/license-ANL-brightgreen)](LICENSE.txt)

## Features

- **Auto-Load Folders**: The application automatically loads the first valid folder from your recent folders list when it starts, providing a seamless experience without requiring manual folder selection.
- **Lazy Loading**: Efficient folder scanning with progress indicators for large datasets.
- **Interactive Plotting**: Real-time data visualization with matplotlib integration.
- **Recent Folders**: Remembers your recently opened folders for quick access.
- **Configurable Settings**: User preferences are saved and restored between sessions.

## Auto-Load Feature

The auto-load feature automatically loads the first valid folder from your recent folders list when the application starts. This provides a better user experience by eliminating the need to manually select a folder each time you open the application.

### Controlling Auto-Load

You can control the auto-load behavior through the application menu:

- **File → Toggle Auto-Load**: Check/uncheck this menu item to enable or disable auto-loading
- The setting is automatically saved and will be remembered for future sessions
- When disabled, the application will start without loading any folder, requiring manual folder selection

### How It Works

1. When the application starts, it checks if auto-loading is enabled (default: enabled)
2. If enabled, it looks for the first folder in your recent folders list
3. If the folder exists and is valid, it automatically loads and scans that folder
4. If no valid folders are found, the application starts normally without loading any folder

## Quickstart

```bash
# Clone the repo
$ git clone https://github.com/BCDA-APS/mdaviz.git
$ cd mdaviz

# Install with development dependencies
$ pip install -e .[dev]

# Run the application
$ python -m mdaviz.app
```

## Conda Environment

It is strongly recommended to use the provided conda environment for development and running the application. This ensures all dependencies (including PyQt5) are available and compatible.

```bash
conda env create -f env.yml
conda activate mdaviz
```

Always activate the environment before running, testing, or using pre-commit hooks.

## Testing

Run all tests:
```bash
pytest src/tests
```

## Pre-commit hooks

To ensure code quality, install and run pre-commit:
```bash
pre-commit install
pre-commit run --all-files
```

## Contributing

1. Fork and clone the repository.
2. Create a new branch for your feature or bugfix.
3. Make your changes and add tests.
4. Run pre-commit and pytest to ensure all checks pass.
5. Submit a pull request.

For a complete installation guide, see [https://bcda-aps.github.io/mdaviz/](https://bcda-aps.github.io/mdaviz/).

## Acknowledgements

"This product includes software produced by UChicago Argonne, LLC
under Contract No. DE-AC02-06CH11357 with the Department of Energy."

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mdaviz",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Fanny Rodolakis <rodolakis@anl.gov>, Pete Jemian <prjemian@gmail.com>, Rafael Vescovi <ravescovi@anl.gov>, Eric Codrea <ecodrea@anl.gov>",
    "keywords": "bluesky, databroker, tiled, catalog",
    "author": null,
    "author_email": "Fanny Rodolakis <rodolakis@anl.gov>, Pete Jemian <prjemian@gmail.com>, Rafael Vescovi <ravescovi@anl.gov>, Eric Codrea <ecodrea@anl.gov>",
    "download_url": "https://files.pythonhosted.org/packages/a5/9c/4eb51f1d33f066d5c90150be099855f2b5f21f9bc6cf728a26ab97a475aa/mdaviz-1.1.0.tar.gz",
    "platform": null,
    "description": "# mdaviz\n\nPython Qt5 application to visualize mda data.\n\nGH tag | GH release | PyPI\n--- | --- | ---\n[![tag](https://img.shields.io/github/tag/BCDA-APS/mdaviz.svg)](https://github.com/BCDA-APS/mdaviz/tags) | [![release](https://img.shields.io/github/release/BCDA-APS/mdaviz.svg)](https://github.com/BCDA-APS/mdaviz/releases) | [![PyPi](https://img.shields.io/pypi/v/mdaviz.svg)](https://pypi.python.org/pypi/mdaviz)\n\nPython version(s) | Unit Tests | Code Coverage | License\n--- | --- | --- | ---\n[![Python version](https://img.shields.io/pypi/pyversions/mdaviz.svg)](https://pypi.python.org/pypi/mdaviz) | [![Unit Tests](https://github.com/BCDA-APS/mdaviz/workflows/Unit%20Tests%20%26%20Code%20Coverage/badge.svg)](https://github.com/BCDA-APS/mdaviz/actions/workflows/unit_tests.yml) | [![Coverage Status](https://coveralls.io/repos/github/BCDA-APS/mdaviz/badge.svg?branch=main)](https://coveralls.io/github/BCDA-APS/mdaviz?branch=main) | [![license: ANL](https://img.shields.io/badge/license-ANL-brightgreen)](LICENSE.txt)\n\n## Features\n\n- **Auto-Load Folders**: The application automatically loads the first valid folder from your recent folders list when it starts, providing a seamless experience without requiring manual folder selection.\n- **Lazy Loading**: Efficient folder scanning with progress indicators for large datasets.\n- **Interactive Plotting**: Real-time data visualization with matplotlib integration.\n- **Recent Folders**: Remembers your recently opened folders for quick access.\n- **Configurable Settings**: User preferences are saved and restored between sessions.\n\n## Auto-Load Feature\n\nThe auto-load feature automatically loads the first valid folder from your recent folders list when the application starts. This provides a better user experience by eliminating the need to manually select a folder each time you open the application.\n\n### Controlling Auto-Load\n\nYou can control the auto-load behavior through the application menu:\n\n- **File \u2192 Toggle Auto-Load**: Check/uncheck this menu item to enable or disable auto-loading\n- The setting is automatically saved and will be remembered for future sessions\n- When disabled, the application will start without loading any folder, requiring manual folder selection\n\n### How It Works\n\n1. When the application starts, it checks if auto-loading is enabled (default: enabled)\n2. If enabled, it looks for the first folder in your recent folders list\n3. If the folder exists and is valid, it automatically loads and scans that folder\n4. If no valid folders are found, the application starts normally without loading any folder\n\n## Quickstart\n\n```bash\n# Clone the repo\n$ git clone https://github.com/BCDA-APS/mdaviz.git\n$ cd mdaviz\n\n# Install with development dependencies\n$ pip install -e .[dev]\n\n# Run the application\n$ python -m mdaviz.app\n```\n\n## Conda Environment\n\nIt is strongly recommended to use the provided conda environment for development and running the application. This ensures all dependencies (including PyQt5) are available and compatible.\n\n```bash\nconda env create -f env.yml\nconda activate mdaviz\n```\n\nAlways activate the environment before running, testing, or using pre-commit hooks.\n\n## Testing\n\nRun all tests:\n```bash\npytest src/tests\n```\n\n## Pre-commit hooks\n\nTo ensure code quality, install and run pre-commit:\n```bash\npre-commit install\npre-commit run --all-files\n```\n\n## Contributing\n\n1. Fork and clone the repository.\n2. Create a new branch for your feature or bugfix.\n3. Make your changes and add tests.\n4. Run pre-commit and pytest to ensure all checks pass.\n5. Submit a pull request.\n\nFor a complete installation guide, see [https://bcda-aps.github.io/mdaviz/](https://bcda-aps.github.io/mdaviz/).\n\n## Acknowledgements\n\n\"This product includes software produced by UChicago Argonne, LLC\nunder Contract No. DE-AC02-06CH11357 with the Department of Energy.\"\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python Qt5 application to visualize MDA data.",
    "version": "1.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/BCDA-APS/mdaviz/issues",
        "Homepage": "https://github.com/BCDA-APS/mdaviz"
    },
    "split_keywords": [
        "bluesky",
        " databroker",
        " tiled",
        " catalog"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c69cb54c6c92e8052a254c721d38b3318e55fd423272bcb402c56e26f878b3dc",
                "md5": "d92a0bbc3d48044e7875edd9f819569c",
                "sha256": "85f01e58bae9fd6228289e93cf729a4d9be674f69874149ad9e9d73895a6d28f"
            },
            "downloads": -1,
            "filename": "mdaviz-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d92a0bbc3d48044e7875edd9f819569c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 670058,
            "upload_time": "2025-07-11T18:40:50",
            "upload_time_iso_8601": "2025-07-11T18:40:50.032267Z",
            "url": "https://files.pythonhosted.org/packages/c6/9c/b54c6c92e8052a254c721d38b3318e55fd423272bcb402c56e26f878b3dc/mdaviz-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a59c4eb51f1d33f066d5c90150be099855f2b5f21f9bc6cf728a26ab97a475aa",
                "md5": "b2c32d0fc43ce98418524121148933f3",
                "sha256": "8826d3ef3fbc56204c5fc34d78be8a21957beeca27fc8feaef324664f2da31bc"
            },
            "downloads": -1,
            "filename": "mdaviz-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b2c32d0fc43ce98418524121148933f3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1697883,
            "upload_time": "2025-07-11T18:40:51",
            "upload_time_iso_8601": "2025-07-11T18:40:51.691109Z",
            "url": "https://files.pythonhosted.org/packages/a5/9c/4eb51f1d33f066d5c90150be099855f2b5f21f9bc6cf728a26ab97a475aa/mdaviz-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-11 18:40:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "BCDA-APS",
    "github_project": "mdaviz",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mdaviz"
}
        
Elapsed time: 1.34352s