mdctn


Namemdctn JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttps://github.com/zeroby0/mdctn.git
SummaryMultidimensional Modified Discrete Cosine Transforms
upload_time2022-12-14 06:58:49
maintainerAravind Reddy Voggu
docs_urlNone
authorAravind Reddy Voggu
requires_python>=3.8,<4.0
licenseMIT
keywords mdct dct fft lapped signal-processing lapped-orthogonal-transform
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MDCTN :yarn:

Multidimensional [Modified Discrete Cosine Transforms](https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform)

```bash
pip install mdctn
```

- [x] 1-D MDCT & IMDCT
- [ ] n-D MDCT & IMDCT
- [ ] Windowing support
- [x] Helper functions for signals



### 1-D MDCT on signals

Signals are [wrapped around](https://github.com/zeroby0/mdctn/discussions/1)
so all the data is stored in the same number of bits.

``` python
import numpy as np
from mdctn import mdct, imdct

x = np.arange(24)

y =  mdct(x, N=16)
z = imdct(y, N=16)

np.allclose(x, z) # True
```

### 1-D Pure MDCT

The core MDCT function

``` python
import numpy as np
from mdctn import core

x = np.arange(6) # [0, 1, 2, 3, 4, 5]

y_1 = core.mdct(x[0:4]) # [-2.50104055, -0.49476881]
y_2 = core.mdct(x[2:6]) # [-4.34879961, -1.26013568]

z_1 = core.imdct(y_1) # [-0.5,  0.5,  2.5,  2.5]
z_2 = core.imdct(y_2) #             [-0.5,  0.5,  4.5,  4.5]

z = (z_1[2:4] + z_2[0:2]) # [2.0, 3.0]
```

### Benchmarks

See [benchmarks.ipynb](./benchmarks.ipynb)





            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zeroby0/mdctn.git",
    "name": "mdctn",
    "maintainer": "Aravind Reddy Voggu",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0",
    "maintainer_email": "aravind.reddy@iiitb.org",
    "keywords": "MDCT,DCT,FFT,lapped,signal-processing,lapped-orthogonal-transform",
    "author": "Aravind Reddy Voggu",
    "author_email": "aravind.reddy@iiitb.org",
    "download_url": "https://files.pythonhosted.org/packages/7b/bd/5057e24afe00c373c8a4836dbdfe64f6ada8d6843f24cb8f399c20624616/mdctn-0.3.1.tar.gz",
    "platform": null,
    "description": "# MDCTN :yarn:\n\nMultidimensional [Modified Discrete Cosine Transforms](https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform)\n\n```bash\npip install mdctn\n```\n\n- [x] 1-D MDCT & IMDCT\n- [ ] n-D MDCT & IMDCT\n- [ ] Windowing support\n- [x] Helper functions for signals\n\n\n\n### 1-D MDCT on signals\n\nSignals are [wrapped around](https://github.com/zeroby0/mdctn/discussions/1)\nso all the data is stored in the same number of bits.\n\n``` python\nimport numpy as np\nfrom mdctn import mdct, imdct\n\nx = np.arange(24)\n\ny =  mdct(x, N=16)\nz = imdct(y, N=16)\n\nnp.allclose(x, z) # True\n```\n\n### 1-D Pure MDCT\n\nThe core MDCT function\n\n``` python\nimport numpy as np\nfrom mdctn import core\n\nx = np.arange(6) # [0, 1, 2, 3, 4, 5]\n\ny_1 = core.mdct(x[0:4]) # [-2.50104055, -0.49476881]\ny_2 = core.mdct(x[2:6]) # [-4.34879961, -1.26013568]\n\nz_1 = core.imdct(y_1) # [-0.5,  0.5,  2.5,  2.5]\nz_2 = core.imdct(y_2) #             [-0.5,  0.5,  4.5,  4.5]\n\nz = (z_1[2:4] + z_2[0:2]) # [2.0, 3.0]\n```\n\n### Benchmarks\n\nSee [benchmarks.ipynb](./benchmarks.ipynb)\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Multidimensional Modified Discrete Cosine Transforms",
    "version": "0.3.1",
    "split_keywords": [
        "mdct",
        "dct",
        "fft",
        "lapped",
        "signal-processing",
        "lapped-orthogonal-transform"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "893502b9d5e8a651ec1aaa22af25b52d",
                "sha256": "995f2d38837a561620d2d8b2fcee0df68e8bcc3f350246b273b160efdd219e47"
            },
            "downloads": -1,
            "filename": "mdctn-0.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "893502b9d5e8a651ec1aaa22af25b52d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0",
            "size": 6400,
            "upload_time": "2022-12-14T06:58:47",
            "upload_time_iso_8601": "2022-12-14T06:58:47.570081Z",
            "url": "https://files.pythonhosted.org/packages/38/18/ee403696812f1f77666e130cbaf5c492cc3b6acfb4ee7095c18d2bd1f825/mdctn-0.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "c7e798794a25c665f3b3b333c178ff99",
                "sha256": "4ebf0501fe17d17d9e22803c7d0e7d447cf7ca08676d6554bc040d92ca564384"
            },
            "downloads": -1,
            "filename": "mdctn-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c7e798794a25c665f3b3b333c178ff99",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0",
            "size": 3455,
            "upload_time": "2022-12-14T06:58:49",
            "upload_time_iso_8601": "2022-12-14T06:58:49.602620Z",
            "url": "https://files.pythonhosted.org/packages/7b/bd/5057e24afe00c373c8a4836dbdfe64f6ada8d6843f24cb8f399c20624616/mdctn-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-14 06:58:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "zeroby0",
    "github_project": "mdctn.git",
    "lcname": "mdctn"
}
        
Elapsed time: 0.05853s